Spring 2013 - Problem 12

Banach-Alaoglu

Let H={zCImz>0}\H = \set{z \in \C \mid \Im{z} > 0} be the upper-half plane. Let f ⁣:HH\func{f}{\H}{\H} be a holomorphic function obeying

limyyf(iy)=iandf(z)1Imzfor all zH.\lim_{y\to\infty} yf\p{iy} = i \quad\text{and}\quad \abs{f\p{z}} \leq \frac{1}{\Im{z}} \quad\text{for all } z \in \H.
  1. For ε>0\epsilon > 0, write gε(x)=1πImf(x+iε)g_\epsilon\p{x} = \frac{1}{\pi} \Im{f\p{x + i\epsilon}}. Show that

    f(z+iε)=Rgε(x)xzdx.f\p{z + i\epsilon} = \int_\R \frac{g_\epsilon\p{x}}{x - z} \,\diff{x}.
  2. Show that there exists a Borel probability measure μ\mu on R\R such that

    f(z)=Rdμ(x)xz.f\p{z} = \int_\R \frac{\diff\mu\p{x}}{x - z}.
Solution.
  1. We have the Schwarz integral formula for the upper-half plane:

    f(z)=1πiRRef(x)xzdx+Cf\p{z} = \frac{1}{\pi i} \int_\R \frac{\Re{f\p{x}}}{x - z} \,\diff{x} + C

    for zHz \in \H and some real constant CC. Replacing ff with if-if, we see

    if(z)=1πiRImf(x)xzdx+C    f(z+iε)=1πRImf(x+iε)xzdx+iC.-if\p{z} = \frac{1}{\pi i} \int_\R \frac{\Im{f\p{x}}}{x - z} \,\diff{x} + C \implies f\p{z + i\epsilon} = \frac{1}{\pi} \int_\R \frac{\Im{f\p{x + i\epsilon}}}{x - z} \,\diff{x} + iC.

    We will show in (2) that C=0C = 0.

  2. The map hRhgεdxh \mapsto \int_\R hg_\epsilon \,\diff{x} defines a linear function on C0(R)C_0\p{\R}, i.e., the closure of compactly supported continuous functions on R\R. Thus, we may view {gε}ε(C0(R))\set{g_\epsilon}_\epsilon \subseteq \p{C_0\p{\R}}^*, the space of Radon measures. We wish to apply Banach-Alaoglu, so we need to show that gε(C0(R))\norm{g_\epsilon}_{\p{C_0\p{\R}}^*} is uniformly bounded.

    Write z=x+iyz = x + iy. For ε>0\epsilon > 0, consider the contour γ\gamma, which is an upper semicircle centered at x+iεx + i\epsilon of radius RR. Notice that if 0<ε<y<R0 < \epsilon < y < R, then zz is in the interior of γ\gamma and z+2iε\conj{z} + 2i\epsilon is outside. Then by the Cauchy integral formula,

    f(z)=12πiγ(1ζz1ζz2iε)f(ζ)dζ=1πγyε(ζz)(ζz2iε)f(ζ)dζ=1πRRyεt2+(yε)2f(x+iε+t)dt+iπ0πyεR2e2iθ+(yε)2f(x+iε+Reiθ)Reiθdθ.\begin{aligned} f\p{z} &= \frac{1}{2\pi i} \int_\gamma \p{\frac{1}{\zeta - z} - \frac{1}{\zeta - \conj{z} - 2i\epsilon}} f\p{\zeta} \,\diff\zeta \\ &= \frac{1}{\pi} \int_\gamma \frac{y - \epsilon}{\p{\zeta - z}\p{\zeta - \conj{z} - 2i\epsilon}} f\p{\zeta} \,\diff\zeta \\ &= \frac{1}{\pi} \int_{-R}^R \frac{y - \epsilon}{t^2 + \p{y - \epsilon}^2} f\p{x + i\epsilon + t} \,\diff{t} + \frac{i}{\pi} \int_0^\pi \frac{y - \epsilon}{R^2e^{2i\theta} + \p{y - \epsilon}^2} f\p{x + i\epsilon + Re^{i\theta}} Re^{i\theta} \,\diff\theta. \end{aligned}

    In the second integral, f(x+iε+Reiθ)1ε+Rsinθ\abs{f\p{x + i\epsilon + Re^{i\theta}}} \leq \frac{1}{\epsilon + R\sin\theta}, and so the integrand tends to 00 as RR \to \infty. Thus, by dominated convergence, we may send RR \to \infty to get

    f(z)=1πRyε(tx)2+(yε)2f(t+iε)dtf\p{z} = \frac{1}{\pi} \int_\R \frac{y - \epsilon}{\p{t - x}^2 + \p{y - \epsilon}^2} f\p{t + i\epsilon} \,\diff{t}

    via a translation change of variables. Taking imaginary parts and multiplying both sides by yy, we see

    Ryε(tx)2+(yε)2gε(t)dt=Imf(z)1Imz    Ry(yε)(tx)2+(yε)2gε(t)dt1.\begin{gathered} \int_\R \frac{y - \epsilon}{\p{t - x}^2 + \p{y - \epsilon}^2} g_\epsilon\p{t} \,\diff{t} = \Im{f\p{z}} \leq \frac{1}{\Im{z}} \\ \implies \int_\R \frac{y\p{y - \epsilon}}{\p{t - x}^2 + \p{y - \epsilon}^2} g_\epsilon\p{t} \,\diff{t} \leq 1. \end{gathered}

    Sending yy \to \infty and applying dominated convergence, we see Rgε(t)dt1\int_\R g_\epsilon\p{t} \,\diff{t} \leq 1. Thus, {gε}ε\set{g_\epsilon}_\epsilon is uniformly bounded, so by Banach-Alaoglu and taking ε=1n\epsilon = \frac{1}{n}, we get a subsequence gnkg_{n_k} which converges weakly to a Radon measure μ\mu. In particular, 1xzC0(R)\frac{1}{x - z} \in C_0\p{\R}, so by weak convergence,

    Rgnk(x)xzdxkRdμ(x)xz,\int_\R \frac{g_{n_k}\p{x}}{x - z} \,\diff{x} \xrightarrow{k\to\infty} \int_\R \frac{\diff\mu\p{x}}{x - z},

    which gives the representation

    f(z)=Rdμ(x)xz+iC.f\p{z} = \int_\R \frac{\diff\mu\p{x}}{x - z} + iC.

    Notice that if z=iyz = iy, then yxiy=yx2+y2\abs{\frac{y}{x - iy}} = \frac{y}{\sqrt{x^2 + y^2}} is bounded. Since μ\mu is a finite measure, we see that 1xzL1(R,μ)\frac{1}{x - z} \in L^1\p{\R, \mu}, is dominated by 11, so by dominated convergence,

    limnRyxiydμ(x)=1iμ(R)=iμ(R).\lim_{n\to\infty} \int_\R \frac{y}{x - iy} \,\diff\mu\p{x} = -\frac{1}{i} \mu\p{\R} = i\mu\p{\R}.

    If C0C \neq 0, then yf(iy)yf\p{iy} would be unbounded, which implies that C=0C = 0. Thus,

    i=limnyf(iy)=iμ(R)    μ(R)=1,i = \lim_{n\to\infty} yf\p{iy} = i\mu\p{\R} \implies \mu\p{\R} = 1,

    so μ(R)\mu\p{\R} is a probability measure.