Spring 2013 - Problem 1

Lebesgue differentiation theorem

Suppose f ⁣:RR\func{f}{\R}{\R} is bounded, Lebesgue measurable, and

limh001f(x+h)f(x)hdx=0.\lim_{h\to0} \int_0^1 \frac{\abs{f\p{x + h} - f\p{x}}}{h} \,\diff{x} = 0.

Show that ff is a.e. constant on the interval [0,1]\br{0, 1}.

Solution.

Since ff is bounded, fLloc1(R)f \in L^1_{\mathrm{loc}}\p{\R} so almost every x[0,1]x \in \br{0, 1} satisfies

limh01hxx+hf(t)dt=f(x),\lim_{h\to0} \frac{1}{h} \int_x^{x+h} f\p{t} \,\diff{t} = f\p{x},

by the Lebesgue differentiation theorem, since [x,x+h)\pco{x, x + h} shrinks nicely to xx. Let a<ba < b be two such Lebesgue points and so

f(a)f(b)=limh01haa+hf(x)dxbb+hf(x)dx=limh01habf(x)dxa+hb+hf(x)dx=limh01habf(x)dxabf(x+h)dxlimh01habf(x+h)f(x)dxlimh01h01f(x+h)f(x)dx=0.\begin{aligned} \abs{f\p{a} - f\p{b}} &= \lim_{h\to0}\,\frac{1}{h} \abs{\int_a^{a+h} f\p{x} \,\diff{x} - \int_b^{b+h} f\p{x} \,\diff{x}} \\ &= \lim_{h\to0}\,\frac{1}{h} \abs{\int_a^b f\p{x} \,\diff{x} - \int_{a+h}^{b+h} f\p{x} \,\diff{x}} \\ &= \lim_{h\to0}\,\frac{1}{h} \abs{\int_a^b f\p{x} \,\diff{x} - \int_a^b f\p{x + h} \,\diff{x}} \\ &\leq \lim_{h\to0}\,\frac{1}{h} \int_a^b \abs{f\p{x + h} - f\p{x}} \,\diff{x} \\ &\leq \lim_{h\to0}\,\frac{1}{h} \int_0^1 \abs{f\p{x + h} - f\p{x}} \,\diff{x} \\ &= 0. \end{aligned}

Thus, f(a)=f(b)f\p{a} = f\p{b} for almost any two a<ba < b, which completes the proof.