Fall 2013 - Problem 8

AM-GM, calculation

Compute the following limits and justify your calculations!

  1. limk0kxn(1xk)kdx\displaystyle \lim_{k\to\infty} \int_0^k x^n\p{1 - \frac{x}{k}}^k \,\diff{x}, where nNn \in \N.
  2. limk0(1+xk)kcos(xk)dx\displaystyle \lim_{k\to\infty} \int_0^\infty \p{1 + \frac{x}{k}}^{-k} \cos\p{\frac{x}{k}} \,\diff{x}.
Solution.
  1. Let fk(x)=(1xk)kχ[0,k](x)f_k\p{x} = \p{1 - \frac{x}{k}}^k \chi_{\br{0,k}}\p{x}. By AM-GM,

    (1(1xk)k)1/(k+1)1k+1(1+k(1xk))=1xk+1,\p{1 \cdot \p{1 - \frac{x}{k}}^k}^{1/\p{k+1}} \leq \frac{1}{k+1}\p{1 + k \cdot \p{1 - \frac{x}{k}}} = 1 - \frac{x}{k+1},

    so for x[0,k]x \in \br{0, k},

    fk(x)fk+1(x)=(1xk)k(1xk+1)k+11xk+1(1xk+1)k+1.\begin{aligned} f_k\p{x} - f_{k+1}\p{x} &= \p{1 - \frac{x}{k}}^k - \p{1 - \frac{x}{k+1}}^{k+1} \\ &\leq 1 - \frac{x}{k+1} - \p{1 - \frac{x}{k+1}}^{k+1}. \end{aligned}

    Since 1xk+1[0,1]1 - \frac{x}{k+1} \in \br{0, 1}, we see fk(x)fk+1(x)f_k\p{x} \leq f_{k+1}\p{x} on [0,k]\br{0, k}. On (k,k+1]\poc{k, k+1}, fk(x)=0f_k\p{x} = 0 but fk+1(x)0f_{k+1}\p{x} \geq 0, and so fkfkf_k \leq f_k everywhere. fk(x)exf_k\p{x} \to e^{-x}, so by the monotone convergence theorem,

    limk0kxn(1xk)kdx=0limkxnfk(x)dx=0xnexdx=Γ(n+1)=n!.\lim_{k\to\infty} \int_0^k x^n\p{1 - \frac{x}{k}}^k \,\diff{x} = \int_0^\infty \lim_{k\to\infty} x^nf_k\p{x} \,\diff{x} = \int_0^\infty x^ne^{-x} \,\diff{x} = \Gamma\p{n+1} = n!.
  2. If k2k \geq 2, then

    (1+xk)k(1+x2)2L1([0,)).\p{1 + \frac{x}{k}}^{-k} \leq \p{1 + \frac{x}{2}}^{-2} \in L^1\p{\pco{0, \infty}}.

    Thus, because cosxk1\abs{\cos\frac{x}{k}} \leq 1, we may apply the dominated convergence theorem:

    limk0(1+xk)kcos(xk)dx=0limk(1+xk)kcos(xk)dx=0excos(0)dx=0exdx=1.\begin{aligned} \lim_{k\to\infty} \int_0^\infty \p{1 + \frac{x}{k}}^{-k} \cos\p{\frac{x}{k}} \,\diff{x} &= \int_0^\infty \lim_{k\to\infty} \p{1 + \frac{x}{k}}^{-k} \cos\p{\frac{x}{k}} \,\diff{x} \\ &= \int_0^\infty e^{-x} \cos\p{0} \,\diff{x} \\ &= \int_0^\infty e^{-x} \,\diff{x} \\ &= 1. \end{aligned}