Fall 2013 - Problem 6

Cauchy estimates

Let UCU \subseteq \C be a bounded open set with 0U0 \in U, and f ⁣:UC\func{f}{U}{\C} be a holomorphic function with f(U)Uf\p{U} \subseteq U and f(0)=0f\p{0} = 0. Show that f(0)1\abs{f'\p{0}} \leq 1.

Hint: Consider the iterations fnffn timesf^n \coloneqq \underbrace{f \circ \cdots \circ f}_{n \text{ times}} of ff.

Solution.

Suppose otherwise, and that f(0)>1\abs{f'\p{0}} > 1. First, notice that

(fn)(0)=f(fn(0))(fn)(0)=f(0)(fn)(0).\p{f^n}'\p{0} = f'\p{f^n\p{0}}\p{f^n}'\p{0} = f'\p{0}\p{f^n}'\p{0}.

By induction, we see that (fn)(0)=(f(0))n\p{f^n}'\p{0} = \p{f'\p{0}}^n.

Let R>0R > 0 be big enough so that UB(0,R)U \subseteq B\p{0, R}. Thus, f(z)R\abs{f\p{z}} \leq R for all zUz \in U. Let B(0,r)U\cl{B\p{0, r}} \subseteq U. Since fnf^n is holomorphic, we have the Cauchy estimate

(fn)(0)Rr    f(0)nRr.\abs{\p{f^n}'\p{0}} \leq \frac{R}{r} \implies \abs{f'\p{0}}^n \leq \frac{R}{r}.

Thus, f(0)1\abs{f'\p{0}} \leq 1 or else we may send nn \to \infty to see Rr=\frac{R}{r} = \infty, which is impossible.