Solution.
Notice that if a < b a < b a < b , then
log a ≤ log b ⟹ 1 log ( 1 / a ) ≤ 1 log ( 1 / b ) . \log{a} \leq \log{b}
\implies \frac{1}{\log\,\p{1/a}} \leq \frac{1}{\log\,\p{1/b}}. log a ≤ log b ⟹ log ( 1/ a ) 1 ≤ log ( 1/ b ) 1 .
Let R ∈ ( 0 , 1 ) R \in \p{0, 1} R ∈ ( 0 , 1 ) so that B ( 0 , R ) ‾ ⊆ D \cl{B\p{0, R}} \subseteq \D B ( 0 , R ) ⊆ D . Thus, given any z ∈ B ( 0 , R 2 ) z \in B\p{0, \frac{R}{2}} z ∈ B ( 0 , 2 R ) , we have B ( z , R 4 ) ‾ ⊆ B ( 0 , R ) \cl{B\p{z, \frac{R}{4}}} \subseteq B\p{0, R} B ( z , 4 R ) ⊆ B ( 0 , R ) and so non-negativity of u u u and the sub-mean value property give
u ( z ) log ( 1 / ∣ z ∣ ) ≤ 1 log ( 1 / ∣ z ∣ ) 1 π ( R / 4 ) 2 ∫ B ( z , R 4 ) u ( w ) d λ ( w ) ≤ 16 π R 2 log ( 1 / R ) ∫ B ( 0 , R ) u ( w ) d λ ( w ) → R → 0 + 0 , \begin{aligned}
\frac{u\p{z}}{\log\,\p{1/\abs{z}}}
&\leq \frac{1}{\log\,\p{1/\abs{z}}} \frac{1}{\pi \p{R/4}^2} \int_{B\p{z,\frac{R}{4}}} u\p{w} \,\diff\lambda\p{w} \\
&\leq \frac{16}{\pi R^2\log\,\p{1/R}} \int_{B\p{0, R}} u\p{w} \,\diff\lambda\p{w}
\xrightarrow{R\to0^+} 0,
\end{aligned} log ( 1/ ∣ z ∣ ) u ( z ) ≤ log ( 1/ ∣ z ∣ ) 1 π ( R /4 ) 2 1 ∫ B ( z , 4 R ) u ( w ) d λ ( w ) ≤ π R 2 log ( 1/ R ) 16 ∫ B ( 0 , R ) u ( w ) d λ ( w ) R → 0 + 0 ,
by assumption. Set f ( z ) = log 1 ∣ z ∣ f\p{z} = \log\frac{1}{\abs{z}} f ( z ) = log ∣ z ∣ 1 and for ε > 0 \epsilon > 0 ε > 0 , let u ε ( z ) = u ( z ) − ε f ( z ) u_\epsilon\p{z} = u\p{z} - \epsilon f\p{z} u ε ( z ) = u ( z ) − ε f ( z ) which is subharmonic on D ∖ { 0 } \D \setminus \set{0} D ∖ { 0 } since u u u is subharmonic and f f f is harmonic.
u ε ( z ) = f ( z ) ( u ( z ) f ( z ) − ε ) → ∣ z ∣ → 0 − ∞ u_\epsilon\p{z} = f\p{z}\p{\frac{u\p{z}}{f\p{z}} - \epsilon} \xrightarrow{\abs{z}\to0} -\infty u ε ( z ) = f ( z ) ( f ( z ) u ( z ) − ε ) ∣ z ∣ → 0 − ∞
by our previous calculation. Thus, for each ε \epsilon ε , there exists r ε > 0 r_\epsilon > 0 r ε > 0 such that u ε ≤ 0 u_\epsilon \leq 0 u ε ≤ 0 on B ( 0 , r ε ) ‾ ∖ { 0 } \cl{B\p{0, r_\epsilon}} \setminus \set{0} B ( 0 , r ε ) ∖ { 0 } . By the maximum principle, u ε u_\epsilon u ε attains its maximum on ∂ D ∪ ∂ B ( 0 , r ε ) \partial\D \cup \partial B\p{0, r_\epsilon} ∂ D ∪ ∂ B ( 0 , r ε ) . Since u ε ( z ) = 0 u_\epsilon\p{z} = 0 u ε ( z ) = 0 for z ∈ ∂ D z \in \partial\D z ∈ ∂ D and u ε ( z ) ≤ 0 u_\epsilon\p{z} \leq 0 u ε ( z ) ≤ 0 for z ∈ ∂ B ( 0 , r ε ) z \in \partial B\p{0, r_\epsilon} z ∈ ∂ B ( 0 , r ε ) , it follows that u ε ≤ 0 u_\epsilon \leq 0 u ε ≤ 0 on all of D ∖ { 0 } \D \setminus \set{0} D ∖ { 0 } .
Letting ε → 0 \epsilon \to 0 ε → 0 , we see that u ( z ) ≤ 0 u\p{z} \leq 0 u ( z ) ≤ 0 on all of D ∖ { 0 } \D \setminus \set{0} D ∖ { 0 } , and so u ≡ 0 u \equiv 0 u ≡ 0 , since u ( z ) ≥ 0 u\p{z} \geq 0 u ( z ) ≥ 0 .