Fall 2013 - Problem 4

subharmonic functions

Let uu be a non-negative continuous function on D{0}={zC0<z1}\cl{\D} \setminus \set{0} = \set{z \in \C \mid 0 < \abs{z} \leq 1} that is subharmonic on D{0}\D \setminus \set{0}. Suppose that uD0\res{u}{\partial\D} \equiv 0 and

limr0+1r2log(1/r){0<z<r}u(z)dλ(z)=0,\lim_{r\to0^+} \frac{1}{r^2\log\,\p{1/r}} \int_{\set{0 < \abs{z} < r}} u\p{z} \,\diff\lambda\p{z} = 0,

where integration is with respect to Lebesgue measure λ\lambda on C\C. Show that then u0u \equiv 0.

Solution.

Notice that if a<ba < b, then

logalogb    1log(1/a)1log(1/b).\log{a} \leq \log{b} \implies \frac{1}{\log\,\p{1/a}} \leq \frac{1}{\log\,\p{1/b}}.

Let R(0,1)R \in \p{0, 1} so that B(0,R)D\cl{B\p{0, R}} \subseteq \D. Thus, given any zB(0,R2)z \in B\p{0, \frac{R}{2}}, we have B(z,R4)B(0,R)\cl{B\p{z, \frac{R}{4}}} \subseteq B\p{0, R} and so non-negativity of uu and the sub-mean value property give

u(z)log(1/z)1log(1/z)1π(R/4)2B(z,R4)u(w)dλ(w)16πR2log(1/R)B(0,R)u(w)dλ(w)R0+0,\begin{aligned} \frac{u\p{z}}{\log\,\p{1/\abs{z}}} &\leq \frac{1}{\log\,\p{1/\abs{z}}} \frac{1}{\pi \p{R/4}^2} \int_{B\p{z,\frac{R}{4}}} u\p{w} \,\diff\lambda\p{w} \\ &\leq \frac{16}{\pi R^2\log\,\p{1/R}} \int_{B\p{0, R}} u\p{w} \,\diff\lambda\p{w} \xrightarrow{R\to0^+} 0, \end{aligned}

by assumption. Set f(z)=log1zf\p{z} = \log\frac{1}{\abs{z}} and for ε>0\epsilon > 0, let uε(z)=u(z)εf(z)u_\epsilon\p{z} = u\p{z} - \epsilon f\p{z} which is subharmonic on D{0}\D \setminus \set{0} since uu is subharmonic and ff is harmonic.

uε(z)=f(z)(u(z)f(z)ε)z0u_\epsilon\p{z} = f\p{z}\p{\frac{u\p{z}}{f\p{z}} - \epsilon} \xrightarrow{\abs{z}\to0} -\infty

by our previous calculation. Thus, for each ε\epsilon, there exists rε>0r_\epsilon > 0 such that uε0u_\epsilon \leq 0 on B(0,rε){0}\cl{B\p{0, r_\epsilon}} \setminus \set{0}. By the maximum principle, uεu_\epsilon attains its maximum on DB(0,rε)\partial\D \cup \partial B\p{0, r_\epsilon}. Since uε(z)=0u_\epsilon\p{z} = 0 for zDz \in \partial\D and uε(z)0u_\epsilon\p{z} \leq 0 for zB(0,rε)z \in \partial B\p{0, r_\epsilon}, it follows that uε0u_\epsilon \leq 0 on all of D{0}\D \setminus \set{0}.

Letting ε0\epsilon \to 0, we see that u(z)0u\p{z} \leq 0 on all of D{0}\D \setminus \set{0}, and so u0u \equiv 0, since u(z)0u\p{z} \geq 0.