Spring 2012 - Problem 9

Jordan's lemma

Prove Jordan's lemma: If f ⁣:CC\func{f}{\C}{\C} is meromorphic, R>0R > 0, and k>0k > 0, then

Γf(z)eikzdz100ksupzΓf(z)\abs{\int_\Gamma f\p{z} e^{ikz} \,\diff{z}} \leq \frac{100}{k} \sup_{z \in \Gamma}\,\abs{f\p{z}}

where Γ\Gamma is the quarter-circle z=Reiθz = Re^{i\theta} with 0θπ20 \leq \theta \leq \frac{\pi}{2}. (It is possible to replace 100100 here by π2\frac{\pi}{2}, but you are not required to prove that.)

Solution.

By parametrizing Γ\Gamma, we get

Γf(z)eikzdz=0π/2f(Reiθ)eikReiθiReiθdθ0π/2supzΓf(z)RekRsinθdθ.\begin{aligned} \abs{\int_\Gamma f\p{z} e^{ikz} \,\diff{z}} &= \abs{\int_0^{\pi/2} f\p{Re^{i\theta}} e^{ikRe^{i\theta}} iRe^{i\theta} \,\diff\theta} \\ &\leq \int_0^{\pi/2} \sup_{z \in \Gamma}\,\abs{f\p{z}} Re^{-kR\sin\theta} \,\diff\theta. \end{aligned}

By concavity of sinθ\sin\theta, we have sinθ2θπ\sin\theta \geq \frac{2\theta}{\pi} on [0,π2]\br{0, \frac{\pi}{2}} and so

0π/2supzΓf(z)RekRsinθdθsupzΓf(z)0π/2RekR2θπdθ=supzΓf(z)π2k(1ekR)π2ksupzΓf(z),\begin{aligned} \int_0^{\pi/2} \sup_{z \in \Gamma}\,\abs{f\p{z}} Re^{-kR\sin\theta} \,\diff\theta &\leq \sup_{z \in \Gamma}\,\abs{f\p{z}} \int_0^{\pi/2} Re^{-kR\frac{2\theta}{\pi}} \,\diff\theta \\ &= \sup_{z \in \Gamma}\,\abs{f\p{z}} \frac{\pi}{2k}\p{1 - e^{-kR}} \\ &\leq \frac{\pi}{2k} \sup_{z \in \Gamma}\,\abs{f\p{z}}, \end{aligned}

which completes the proof.