Spring 2012 - Problem 7

harmonic functions, Harnack's inequality

Let {un(z)}n\set{u_n\p{z}}_n be a sequence of real-valued harmonic functions on D{zCz<1}\D \coloneqq \set{z \in \C \mid \abs{z} < 1} that obey

u1(z)u2(z)u3(z)0for all zD.u_1\p{z} \geq u_2\p{z} \geq u_3\p{z} \geq \cdots \geq 0 \quad\text{for all } z \in \D.

Prove that zinfnun(z)z \mapsto \inf_n u_n\p{z} is a harmonic function on D\D.

Solution.

Let 0<r<R<10 < r < R < 1 so that B(0,r)B(0,R)D\cl{B\p{0, r}} \subseteq \cl{B\p{0, R}} \subseteq \D. Since {un}n\set{u_n}_n is a decreasing sequence, we unumu_n - u_m is a non-negative harmonic function for nmn \leq m. Thus, by Harnack's inequality, we have for any zB(0,r)z \in \cl{B\p{0, r}} that

un(z)um(z)=un(z)um(z)R+rRr(un(0)um(0))=R+rRrun(0)um(0).\abs{u_n\p{z} - u_m\p{z}} = u_n\p{z} - u_m\p{z} \leq \frac{R + r}{R - r}\p{u_n\p{0} - u_m\p{0}} = \frac{R + r}{R - r}\abs{u_n\p{0} - u_m\p{0}}.

Since {un(0)}n\set{u_n\p{0}}_n is a decreasing sequence bounded below (by 00), it is convergent, hence Cauchy. Thus, because r,Rr, R are independent of n,mn, m, it follows that {un}n\set{u_n}_n is uniformly Cauchy on compact sets, so it converges locally uniformly to u=infnunu = \inf_n u_n. Since each unu_n was continuous, locally uniform convergence implies that uu is also continuous, so we may integrate.

Let B(z,R)B\p{z, R} be such that B(z,R)D\cl{B\p{z, R}} \subseteq \D. Then because unu_n is harmonic,

un(z)=12π02πun(z+Reiθ)dθ.u_n\p{z} = \frac{1}{2\pi} \int_0^{2\pi} u_n\p{z + Re^{i\theta}} \,\diff\theta.

By uniform convergence, we may take nn \to \infty and interchange the limit and integral to get

u(z)=12π02πu(z+Reiθ)dθ,u\p{z} = \frac{1}{2\pi} \int_0^{2\pi} u\p{z + Re^{i\theta}} \,\diff\theta,

so uu satisfies the mean value property, hence harmonic. We reproduce the proof of this fact below:

Let

ρ(z)=Cexp(11z2)χD(z)\rho\p{z} = C\exp\p{-\frac{1}{1 - \abs{z}^2}} \chi_{\D\p{z}}

with CC such that ρL1=1\norm{\rho}_{L^1} = 1. Then ρ\rho is a smooth function supported in D\D. For ε>0\epsilon > 0, set ρε(z)=1ερ(zε)\rho_\epsilon\p{z} = \frac{1}{\epsilon}\rho\p{\frac{z}{\epsilon}} so that ρε\rho_\epsilon is supported on B(0,ε)B\p{0, \epsilon} and set uε=ρεuu_\epsilon = \rho_\epsilon * u.

Let zDz \in \D and ε\epsilon small enough so that B(z,ε)D\cl{B\p{z, \epsilon}} \subseteq \D. Then

uε(z)=B(0,ε)ρε(w)u(zw)dw=0ε02πrρε(reiθ)u(zreiθ)dθdr=0εrρε(r)02πu(zreiθ)dθdr=0ε2πrρε(r)u(z)dr=u(z)0ε02πrρε(reiθ)dθdr=u(z)ρεL1=u(z).\begin{aligned} u_\epsilon\p{z} &= \int_{B\p{0,\epsilon}} \rho_\epsilon\p{w} u\p{z - w} \,\diff{w} \\ &= \int_0^\epsilon \int_0^{2\pi} r\rho_\epsilon\p{re^{i\theta}} u\p{z - re^{i\theta}} \,\diff\theta \,\diff{r} \\ &= \int_0^\epsilon r\rho_\epsilon\p{r} \int_0^{2\pi} u\p{z - re^{i\theta}} \,\diff\theta \,\diff{r} \\ &= \int_0^\epsilon 2\pi r\rho_\epsilon\p{r} u\p{z} \,\diff{r} \\ &= u\p{z} \int_0^\epsilon \int_0^{2\pi} r\rho_\epsilon\p{re^{i\theta}} \,\diff\theta \,\diff{r} \\ &= u\p{z} \norm{\rho_\epsilon}_{L^1} \\ &= u\p{z}. \end{aligned}

Thus, uε=uu_\epsilon = u whenever ε\epsilon is small enough, and because uεu_\epsilon is a convolution with a smooth function against a continuous function, it follows that uu is also smooth. To show that uu is harmonic, we have by the divergence theorem

B(z,R)Δu(w)dm=B(z,R)u(z+Reiθ)(cosθ,sinθ)dθ=B(z,R)ux(z+Reiθ)cosθ+ux(z+Reiθ)sinθdθ=B(z,R)ur(z+Reiθ)dθ=rB(z,R)u(z+Reiθ)dθ=0,\begin{aligned} \int_{B\p{z,R}} \Delta u\p{w} \,\diff{m} &= \int_{\partial B\p{z,R}} \nabla u\p{z + Re^{i\theta}} \cdot \p{\cos\theta, \sin\theta} \,\diff\theta \\ &= \int_{\partial B\p{z,R}} \pder{u}{x}\p{z + Re^{i\theta}} \cos\theta + \pder{u}{x}\p{z + Re^{i\theta}}\sin\theta \,\diff\theta \\ &= \int_{\partial B\p{z,R}} \pder{u}{r}\p{z + Re^{i\theta}} \,\diff\theta \\ &= \pder{}{r} \int_{\partial B\p{z,R}} u\p{z + Re^{i\theta}} \,\diff\theta \\ &= 0, \end{aligned}

since uu satisfies the mean value property. Thus, because uu is smooth, Δu\Delta u is continuous, and so

Δu(z)=limR01m(B(z,R))B(z,R)Δu(w)dw=0,\Delta u\p{z} = \lim_{R\to0} \frac{1}{m\p{B\p{z,R}}} \int_{B\p{z,R}} \Delta u\p{w} \,\diff{w} = 0,

so uu is harmonic.