Spring 2012 - Problem 5

Hilbert spaces, Riesz representation

State and prove the Riesz representation theorem for linear functionals on a (separable) Hilbert space.

Solution.

Let H\mathcal{H} be a Hilbert space and let fHf \in \mathcal{H}^* be a bounded linear functional. Then there exists a unique yHy \in \mathcal{H} such that f(x)=x,yf\p{x} = \inner{x, y} for all xHx \in \mathcal{H}.

We first show uniqueness: suppose y,yHy, y' \in \mathcal{H} are such that x,y=x,y\inner{x, y} = \inner{x, y'} for all xHx \in \mathcal{H}. In particular, if we set x=yyx = y - y', then

0=yy,yy=yy2    y=y.0 = \inner{y - y', y - y'} = \norm{y - y'}^2 \implies y = y'.

Next, we need to show existence. If f=0f = 0, then f(x)=x,0f\p{x} = \inner{x, 0}. Otherwise, kerf\ker{f} is a closed, proper subspace of H\mathcal{H}. In particular, there exists z(kerf)z \in \p{\ker{f}}^\perp, and by normalizing, we may assume that z=1\norm{z} = 1.

Let xHx \in \mathcal{H}. By linearity, if we set u=xf(z)zf(x)u = xf\p{z} - zf\p{x}, then

f(u)=f(x)f(z)f(z)f(x)=0,f\p{u} = f\p{x}f\p{z} - f\p{z}f\p{x} = 0,

so ukerfu \in \ker{f}. Thus, since z(kerf)z \in \p{\ker{f}}^\perp,

0=u,z=f(z)x,zf(x)z,z    f(x)=x,f(z)z.\begin{aligned} 0 = \inner{u, z} &= f\p{z}\inner{x, z} - f\p{x}\inner{z, z} \\ \implies f\p{x} &= \inner{x, \conj{f\p{z}}z}. \end{aligned}

Thus, if we set y=f(z)zy = \conj{f\p{z}}z, we have f(x)=x,yf\p{x} = \inner{x, y} for any xHx \in \mathcal{H}, which completes the proof.