Spring 2012 - Problem 3

density argument

Given f ⁣:[0,1]R\func{f}{\br{0,1}}{\R} belonging to L1(dx)L^1\p{\diff{x}} and n{1,2,3,}n \in \set{1, 2, 3, \ldots} define

fn(x)=nk/n(k+1)/nf(y)dyfor x[kn,k+1n)andk=0,,n1.f_n\p{x} = n \int_{k/n}^{\p{k+1}/n} f\p{y} \,\diff{y} \quad\text{for } x \in \pco{\frac{k}{n}, \frac{k+1}{n}} \quad\text{and}\quad k = 0, \ldots, n-1.

Prove fnff_n \to f in L1L^1.

Solution.

Notice that

nk/n(k+1)/ndy=n1n=1n \int_{k/n}^{\p{k+1}/n} \,\diff{y} = n \cdot \frac{1}{n} = 1

for any k=0,,n1k = 0, \ldots, n-1.

Let ε>0\epsilon > 0. Since C([0,1])C\p{\br{0, 1}} is dense in L1([0,1])L^1\p{\br{0, 1}}, there exists a continuous gg such that fgL1<ε\norm{f - g}_{L^1} < \epsilon. Since [0,1]\br{0, 1} is compact, gg is uniformly continuous, so there exists δ>0\delta > 0 so that xy<δ    g(x)g(y)<ε\abs{x - y} < \delta \implies \abs{g\p{x} - g\p{y}} < \epsilon.

fnfL1=fn(x)f(x)dx=k=0n1k/n(k+1)/nnk/n(k+1)/nf(y)f(x)dydxk=0n1k/n(k+1)/nnk/n(k+1)/nf(y)f(x)dydxk=0n1k/n(k+1)/nnk/n(k+1)/nf(y)g(y)+g(y)g(x)+g(x)f(x)dydx.\begin{aligned} \norm{f_n - f}_{L^1} &= \int \abs{f_n\p{x} - f\p{x}} \,\diff{x} \\ &= \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\abs{\int_{k/n}^{\p{k+1}/n} f\p{y} - f\p{x} \,\diff{y}} \,\diff{x} \\ &\leq \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{f\p{y} - f\p{x}} \,\diff{y} \,\diff{x} \\ &\leq \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{f\p{y} - g\p{y}} + \abs{g\p{y} - g\p{x}} + \abs{g\p{x} - f\p{x}} \,\diff{y} \,\diff{x}. \end{aligned}

We will look at each term separately: In the following, everything is non-negative, so by Fubini-Tonelli,

k=0n1k/n(k+1)/nnk/n(k+1)/nf(y)g(y)dydx=k=0n1k/n(k+1)/nnk/n(k+1)/nf(y)g(y)dxdy=k=0n1k/n(k+1)/nf(y)g(y)dy=fgL1ε.\begin{aligned} \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{f\p{y} - g\p{y}} \,\diff{y} \,\diff{x} &= \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{f\p{y} - g\p{y}} \,\diff{x} \,\diff{y} \\ &= \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} \abs{f\p{y} - g\p{y}} \,\diff{y} \\ &= \norm{f - g}_{L^1} \\ &\leq \epsilon. \end{aligned}

Similarly,

k=0n1k/n(k+1)/nnk/n(k+1)/nf(x)g(x)dydx=k=0n1k/n(k+1)/nf(x)g(x)dx=fgL1ε\begin{aligned} \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{f\p{x} - g\p{x}} \,\diff{y} \,\diff{x} &= \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} \abs{f\p{x} - g\p{x}} \,\diff{x} \\ &= \norm{f - g}_{L^1} \\ &\leq \epsilon \end{aligned}

Finally, if nn is large enough, then

k=0n1k/n(k+1)/nnk/n(k+1)/ng(y)g(x)dydxk=0n1k/n(k+1)/nnk/n(k+1)/nεdydx=ε.\begin{aligned} \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \abs{g\p{y} - g\p{x}} \,\diff{y} \,\diff{x} &\leq \sum_{k=0}^{n-1} \int_{k/n}^{\p{k+1}/n} n\int_{k/n}^{\p{k+1}/n} \epsilon \,\diff{y} \,\diff{x} \\ &= \epsilon. \end{aligned}

Overall, we get fnfL13ε\norm{f_n - f}_{L^1} \leq 3\epsilon. Sending ε0\epsilon \to 0, we get the claim.