Spring 2012 - Problem 12

Jensen's formula

Show that the only entire function f(z)f\p{z} obeying both

f(z)ezandf(n1+n)=0for allnZ\abs{f'\p{z}} \leq e^{\abs{z}} \quad\text{and}\quad f\p{\frac{n}{\sqrt{1 + \abs{n}}}} = 0 \quad\text{for all}\quad n \in \Z

is the zero function. Here ' denotes differentiation.

Solution.

Suppose there exists such a function ff which is not the zero function. First, by the fundamental theorem of calculus,

f(z)=0zf(z)dz+f(0)    f(z)zez,f\p{z} = \int_0^z f'\p{z} \,\diff{z} + f\p{0} \implies \abs{f\p{z}} \leq \abs{z}e^{\abs{z}},

since f(0)=0f\p{0} = 0. Since exxe^x \geq x, we see f(z)e2z\abs{f\p{z}} \leq e^{2\abs{z}}.

Since ff is not identically zero, there exists n0Nn_0 \in \N so that g(z)zn0f(z)g\p{z} \coloneqq z^{-n_0}f\p{z} satisfies g(0)0g\p{0} \neq 0. The zeroes of ff cannot accumulate, so the zeroes are countable, so let {an}n\set{a_n}_n be an enumeration of the zeroes of ff, which are precisely the zeroes of gg.

First, notice that if nn is large enough, say, nNn \geq N, then n1+nn\abs{\frac{n}{\sqrt{1 + \abs{n}}}} \leq \sqrt{n}. Thus, for any MNM \geq N,

n=NMlogn1+nn=NM12logn12NMlogxdx121Mlogxdx12(MlogMM+1),\begin{aligned} \sum_{n=N}^M \log{\abs{\frac{n}{\sqrt{1 + \abs{n}}}}} &\leq \sum_{n=N}^M \frac{1}{2}\log{n} \\ &\leq \frac{1}{2} \int_N^M \log{x} \,\diff{x} \\ &\leq \frac{1}{2} \int_1^M \log{x} \,\diff{x} \\ &\leq \frac{1}{2}\p{M\log{M} - M + 1}, \end{aligned}

where the second inequality comes from considering lower Riemann sums of logx\log{x} on [N,M]\br{N, M}.

Let R>0R > 0 be such that g(z)0g\p{z} \neq 0 on z=R\abs{z} = R. Then if a<R\abs{a} < R, we have logaR<0\log{\abs{\frac{a}{R}}} < 0, and so by Jensen's formula,

logg(0)=12π02πlogg(Reiθ)dθ+an<RloganRlogRn0e2R+an<R;nNloganR2Rn0logR+n1+n<R;nNlognR1+n2Rn0logR+n<R;nNlognR1+n=2Rn0logRn<RlogR+n<R;nNlogn1+n2Rn0logRR2logR+12(RlogRR+1).\begin{aligned} \log{\abs{g\p{0}}} &= \frac{1}{2\pi} \int_0^{2\pi} \log{\abs{g\p{Re^{i\theta}}}} \,\diff\theta + \sum_{\abs{a_n} < R} \log{\abs{\frac{a_n}{R}}} \\ &\leq \log{\abs{R^{-n_0}e^{2R}}} + \sum_{\abs{a_n} < R; n \geq N} \log{\abs{\frac{a_n}{R}}} \\ &\leq 2R - n_0\log{R} + \sum_{\frac{n}{\sqrt{1+\abs{n}}} < R; n \geq N} \log{\frac{\abs{n}}{R\sqrt{1 + \abs{n}}}} \\ &\leq 2R - n_0\log{R} + \sum_{\sqrt{n} < R; n \geq N} \log{\frac{\abs{n}}{R\sqrt{1 + \abs{n}}}} \\ &= 2R - n_0\log{R} - \sum_{\sqrt{n} < R} \log{R} + \sum_{\sqrt{n} < R; n \geq N} \log{\frac{\abs{n}}{\sqrt{1 + \abs{n}}}} \\ &\leq 2R - n_0\log{R} - \floor{R^2} \log{R} + \frac{1}{2}\p{R\log{R} - R + 1}. \end{aligned}

Since gg only has countably many zeroes, it follows that we may send RR \to \infty. But because the dominating term is R2logR-\floor{R^2}\log{R}, we see logg(0)\log{\abs{g\p{0}}} \leq -\infty, which is impossible as g(0)0g\p{0} \neq 0. Thus, ff must have been identically zero to begin with, which completes the proof.