Spring 2012 - Problem 11

construction

Let P(z)P\p{z} be a polynomial. Show that there is an integer nn and a second polynomial Q(z)Q\p{z} so that

P(z)Q(z)=znP(z)2whenever z=1.P\p{z}Q\p{z} = z^n \abs{P\p{z}}^2 \quad\text{whenever } \abs{z} = 1.
Solution.

Write P(z)=a0++an1zn1+anznP\p{z} = a_0 + \cdots + a_{n-1}z^{n-1} + a_nz^n. Then

P(z)=a0++an1(z)n1+an(z)n    znP(z)=a0zn++an1zn1z+anzn\begin{aligned} \conj{P\p{z}} &= \conj{a_0} + \cdots + \conj{a_{n-1}} \p{\conj{z}}^{n-1} + \conj{a_n} \p{\conj{z}}^n \\ \implies z^n\conj{P\p{z}} &= \conj{a_0}z^n + \cdots + \conj{a_{n-1}}\abs{z}^{n-1}z + \conj{a_n} \abs{z}^n \end{aligned}

If z=1\abs{z} = 1, then

znP(z)=a0zn++an1z+an.z^n\conj{P\p{z}} = \conj{a_0}z^n + \cdots + \conj{a_{n-1}}z + \conj{a_n}.

Set Q(z)=an++a0znQ\p{z} = \conj{a_n} + \cdots + \conj{a_0} z^n so that Q(z)=znP(z)Q\p{z} = z^n \conj{P\p{z}} on z=1\abs{z} = 1. Hence, for these zz,

P(z)Q(z)=znP(z)P(z)=znP(z)2,P\p{z}Q\p{z} = z^nP\p{z} \conj{P\p{z}} = z^n\abs{P\p{z}}^2,

which completes the proof.