Solution.
Write P(z)=a0+⋯+an−1zn−1+anzn. Then
P(z)⟹znP(z)=a0+⋯+an−1(z)n−1+an(z)n=a0zn+⋯+an−1∣z∣n−1z+an∣z∣n
If ∣z∣=1, then
znP(z)=a0zn+⋯+an−1z+an.
Set Q(z)=an+⋯+a0zn so that Q(z)=znP(z) on ∣z∣=1. Hence, for these z,
P(z)Q(z)=znP(z)P(z)=zn∣P(z)∣2,
which completes the proof.