Spring 2012 - Problem 10

Gamma function

Let us define the Gamma function via

Γ(z)=0tz1etdt,\Gamma\p{z} = \int_0^\infty t^{z-1} e^{-t} \,\diff{t},

at least when the integral is absolutely convergent. Show that this function extends to a meromorphic function in the whole complex plane. You cannot use any particular properties of the Gamma function unless you derive them from this definition.

Solution.

First, notice that if Rez>0\Re{z} > 0, then

0tz1etdt0tRez1etdt<.\int_0^\infty \abs{t^{z-1}} e^{-t} \,\diff{t} \leq \int_0^\infty t^{\Re{z} - 1} e^{-t} \,\diff{t} < \infty.

In other words, the integral converges absolutely, and so it converges uniformly on compact sets. Thus, Γ\Gamma is a continuous function. Let R{Rez>0}R \subseteq \set{\Re{z} > 0} be a rectangle. Since the integrand is non-negative, we may apply Fubini-Tonelli to get

RΓ(z)dz=R0tz1etdtdz=0Re(z1)logtdzdt=0.\int_{\partial R} \Gamma\p{z} \,\diff{z} = \int_{\partial R} \int_0^\infty t^{z-1} e^{-t} \,\diff{t} \,\diff{z} = \int_0^\infty \int_{\partial R} e^{\p{z-1}\log{t}} \,\diff{z} \,\diff{t} = 0.

Indeed, e(z1)logte^{\p{z-1}\log{t}} is holomorphic for any t>0t > 0, and so by Cauchy's theorem, Re(z1)logtdz=0\int_{\partial R} e^{\p{z-1}\log{t}} \,\diff{z} = 0 for almost every tt. Thus, by Morera's theorem, we see that Γ\Gamma is holomorphic in the right half-plane.

For 0<ε<R0 < \epsilon < R, observe that

εRtz1etdt=tz1etεR+(z1)εRtz2etdt.\int_\epsilon^R t^{z-1} e^{-t} \,\diff{t} = \Bigl. -t^{z-1}e^{-t} \Bigr\rvert_\epsilon^R + \p{z - 1}\int_\epsilon^R t^{z-2} e^{-t} \,\diff{t}.

Sending ε0\epsilon \to 0 and RR \to \infty, we get

Γ(z)=(z1)Γ(z1).\Gamma\p{z} = \p{z - 1}\Gamma\p{z - 1}.

Thus, for nNn \in \N, this gives

Γ(z+n+1)=(z+n)Γ(z+n)==(z+n)(z+1)zΓ(z)Γ(z)=Γ(z+n+1)(z+n)(z+1)z.\begin{gathered} \Gamma\p{z + n + 1} = \p{z + n}\Gamma\p{z + n} = \cdots = \p{z + n} \cdots \p{z + 1} z\Gamma\p{z} \\ \Gamma\p{z} = \frac{\Gamma\p{z + n + 1}}{\p{z + n} \cdots \p{z + 1} z}. \end{gathered}

Thus, Γ(z)\Gamma\p{z} extends meromorphically to Re(z+n+1)>0    Rez>n1\Re\p{z + n + 1} > 0 \iff \Re{z} > -n - 1 for any nNn \in \N, except for poles at {n,,2,1,0}\set{-n, \ldots, -2, -1, 0}. Hence, Γ\Gamma extends meromorphically to the entire complex plane.