Solution.
Let
( A r f ) ( x ) = 1 2 r ∫ x − r x + r ∣ f ( x ) − f ( y ) ∣ d y ( A f ) ( x ) = lim sup r → 0 ( A r f ) ( x ) , \begin{aligned}
\p{A_rf}\p{x}
&= \frac{1}{2r} \int_{x-r}^{x+r} \abs{f\p{x} - f\p{y}} \,\diff{y} \\
\p{Af}\p{x}
&= \limsup_{r\to0}\,\p{A_rf}\p{x},
\end{aligned} ( A r f ) ( x ) ( A f ) ( x ) = 2 r 1 ∫ x − r x + r ∣ f ( x ) − f ( y ) ∣ d y = r → 0 lim sup ( A r f ) ( x ) ,
so we need to show that A f = 0 Af = 0 A f = 0 for almost every x ∈ R x \in \R x ∈ R .
Let ε > 0 \epsilon > 0 ε > 0 . Since compactly supported continuous functions are dense in L 1 ( R ) L^1\p{\R} L 1 ( R ) , there exists g ∈ C c ( R ) g \in C_c\p{\R} g ∈ C c ( R ) such that ∥ f − g ∥ L 1 < ε \norm{f - g}_{L^1} < \epsilon ∥ f − g ∥ L 1 < ε . Thus,
( A r f ) ( x ) ≤ ( A r ( f − g ) ) ( x ) + ( A r g ) ( x ) . \p{A_rf}\p{x} \leq \p{A_r\p{f - g}}\p{x} + \p{A_rg}\p{x}. ( A r f ) ( x ) ≤ ( A r ( f − g ) ) ( x ) + ( A r g ) ( x ) .
It's clear by continuity that the Lebesgue differentiation theorem holds at points of continuity, so A g = 0 Ag = 0 A g = 0 everywhere. Hence, if we set h = f − g h = f - g h = f − g , ( A f ) ( x ) ≤ ( A h ) ( x ) \p{Af}\p{x} \leq \p{Ah}\p{x} ( A f ) ( x ) ≤ ( A h ) ( x ) .
For λ > 0 \lambda > 0 λ > 0 , consider the set E λ = { x ∈ R | ( A f ) ≥ λ } ( x ) E_\lambda = \set{x \in \R \st \p{Af} \geq \lambda}\p{x} E λ = { x ∈ R ∣ ( A f ) ≥ λ } ( x ) . Notice that by the triangle inequality,
( A r h ) ( x ) = 1 2 r ∫ x − r x + r ∣ h ( x ) − h ( y ) ∣ d y ≤ 1 2 r ∫ x − r x + r ∣ h ( x ) ∣ d y + 1 2 r ∫ x − r x + r ∣ h ( x ) ∣ d y ≤ ( M h ) ( x ) + ∣ h ( x ) ∣ . \begin{aligned}
\p{A_rh}\p{x}
&= \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x} - h\p{y}} \,\diff{y} \\
&\leq \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x}} \,\diff{y} + \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x}} \,\diff{y} \\
&\leq \p{\mathcal{M}h}\p{x} + \abs{h\p{x}}.
\end{aligned} ( A r h ) ( x ) = 2 r 1 ∫ x − r x + r ∣ h ( x ) − h ( y ) ∣ d y ≤ 2 r 1 ∫ x − r x + r ∣ h ( x ) ∣ d y + 2 r 1 ∫ x − r x + r ∣ h ( x ) ∣ d y ≤ ( M h ) ( x ) + ∣ h ( x ) ∣ .
Since this is independent of r r r , we have ( A f ) ( x ) ≤ ( A h ) ( x ) ≤ ( M h ) ( x ) + ∣ h ( x ) ∣ \p{Af}\p{x} \leq \p{Ah}\p{x} \leq \p{\mathcal{M}h}\p{x} + \abs{h\p{x}} ( A f ) ( x ) ≤ ( A h ) ( x ) ≤ ( M h ) ( x ) + ∣ h ( x ) ∣ . Thus,
E λ ⊆ { x ∈ R | ( M h ) ( x ) ≥ λ 2 } ∪ { x ∈ R | ∣ h ( x ) ∣ ≥ λ 2 } . E_\lambda
\subseteq \set{x \in \R \st \p{\mathcal{M}h}\p{x} \geq \frac{\lambda}{2}} \cup \set{x \in \R \st \abs{h\p{x}} \geq \frac{\lambda}{2}}. E λ ⊆ { x ∈ R ∣ ∣ ( M h ) ( x ) ≥ 2 λ } ∪ { x ∈ R ∣ ∣ ∣ h ( x ) ∣ ≥ 2 λ } .
By the Hardy-Littlewood maximal theorem and Chebyshev's inequality, we get
m ( E λ ) ≤ 6 λ ∥ h ∥ L 1 + 2 λ ∥ h ∥ L 1 ≤ 8 ε λ → ε → 0 0. m\p{E_\lambda}
\leq \frac{6}{\lambda}\norm{h}_{L^1} + \frac{2}{\lambda}\norm{h}_{L^1}
\leq \frac{8\epsilon}{\lambda} \xrightarrow{\epsilon\to0} 0. m ( E λ ) ≤ λ 6 ∥ h ∥ L 1 + λ 2 ∥ h ∥ L 1 ≤ λ 8 ε ε → 0 0.
Thus,
{ x ∈ R | ( A f ) > 0 } = ⋃ n = 1 ∞ E 1 / n ⟹ m ( { x ∈ R | ( A f ) > 0 } ) ≤ ∑ n = 1 ∞ m ( E 1 / n ) = 0. \set{x \in \R \st \p{Af} > 0}
= \bigcup_{n=1}^\infty E_{1/n}
\implies
m\p{\set{x \in \R \st \p{Af} > 0}}
\leq \sum_{n=1}^\infty m\p{E_{1/n}}
= 0. { x ∈ R ∣ ( A f ) > 0 } = n = 1 ⋃ ∞ E 1/ n ⟹ m ( { x ∈ R ∣ ( A f ) > 0 } ) ≤ n = 1 ∑ ∞ m ( E 1/ n ) = 0.
Hence, A f = 0 Af = 0 A f = 0 for almost every x ∈ R x \in \R x ∈ R , which completes the proof.