Fall 2012 - Problem 6

Hardy-Littlewood maximal inequality, Lebesgue differentiation theorem

Let fL1(R)f \in L^1\p{\R} and let Mf\mathcal{M}f denote its maximal function, that is,

(Mf)(x)=sup0<r<12rrrf(xy)dy.\p{\mathcal{M}f}\p{x} = \sup_{0<r<\infty} \frac{1}{2r} \int_{-r}^r \abs{f\p{x - y}} \,\diff{y}.

By the Hardy-Littlewood maximal function theorem,

m({xR(Mf)(x)>λ})3λ1fL1for all λ>0.m\p{\set{x \in \R \mid \p{\mathcal{M}f}\p{x} > \lambda}} \leq 3\lambda^{-1}\norm{f}_{L^1} \quad\text{for all } \lambda > 0.

Using this, show that

lim supr012rxrx+rf(y)f(x)dy=0 for almost every xR.\limsup_{r\to0} \frac{1}{2r} \int_{x-r}^{x+r} \abs{f\p{y} - f\p{x}} \,\diff{y} = 0 \quad\text{ for almost every } x \in \R.
Solution.

Let

(Arf)(x)=12rxrx+rf(x)f(y)dy(Af)(x)=lim supr0(Arf)(x),\begin{aligned} \p{A_rf}\p{x} &= \frac{1}{2r} \int_{x-r}^{x+r} \abs{f\p{x} - f\p{y}} \,\diff{y} \\ \p{Af}\p{x} &= \limsup_{r\to0}\,\p{A_rf}\p{x}, \end{aligned}

so we need to show that Af=0Af = 0 for almost every xRx \in \R.

Let ε>0\epsilon > 0. Since compactly supported continuous functions are dense in L1(R)L^1\p{\R}, there exists gCc(R)g \in C_c\p{\R} such that fgL1<ε\norm{f - g}_{L^1} < \epsilon. Thus,

(Arf)(x)(Ar(fg))(x)+(Arg)(x).\p{A_rf}\p{x} \leq \p{A_r\p{f - g}}\p{x} + \p{A_rg}\p{x}.

It's clear by continuity that the Lebesgue differentiation theorem holds at points of continuity, so Ag=0Ag = 0 everywhere. Hence, if we set h=fgh = f - g, (Af)(x)(Ah)(x)\p{Af}\p{x} \leq \p{Ah}\p{x}.

For λ>0\lambda > 0, consider the set Eλ={xR|(Af)λ}(x)E_\lambda = \set{x \in \R \st \p{Af} \geq \lambda}\p{x}. Notice that by the triangle inequality,

(Arh)(x)=12rxrx+rh(x)h(y)dy12rxrx+rh(x)dy+12rxrx+rh(x)dy(Mh)(x)+h(x).\begin{aligned} \p{A_rh}\p{x} &= \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x} - h\p{y}} \,\diff{y} \\ &\leq \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x}} \,\diff{y} + \frac{1}{2r} \int_{x-r}^{x+r} \abs{h\p{x}} \,\diff{y} \\ &\leq \p{\mathcal{M}h}\p{x} + \abs{h\p{x}}. \end{aligned}

Since this is independent of rr, we have (Af)(x)(Ah)(x)(Mh)(x)+h(x)\p{Af}\p{x} \leq \p{Ah}\p{x} \leq \p{\mathcal{M}h}\p{x} + \abs{h\p{x}}. Thus,

Eλ{xR|(Mh)(x)λ2}{xR|h(x)λ2}.E_\lambda \subseteq \set{x \in \R \st \p{\mathcal{M}h}\p{x} \geq \frac{\lambda}{2}} \cup \set{x \in \R \st \abs{h\p{x}} \geq \frac{\lambda}{2}}.

By the Hardy-Littlewood maximal theorem and Chebyshev's inequality, we get

m(Eλ)6λhL1+2λhL18ελε00.m\p{E_\lambda} \leq \frac{6}{\lambda}\norm{h}_{L^1} + \frac{2}{\lambda}\norm{h}_{L^1} \leq \frac{8\epsilon}{\lambda} \xrightarrow{\epsilon\to0} 0.

Thus,

{xR|(Af)>0}=n=1E1/n    m({xR|(Af)>0})n=1m(E1/n)=0.\set{x \in \R \st \p{Af} > 0} = \bigcup_{n=1}^\infty E_{1/n} \implies m\p{\set{x \in \R \st \p{Af} > 0}} \leq \sum_{n=1}^\infty m\p{E_{1/n}} = 0.

Hence, Af=0Af = 0 for almost every xRx \in \R, which completes the proof.