Solution.
First, observe that
∣ ∣ f n ∣ 2 − ∣ f n − f ∣ 2 − ∣ f ∣ 2 ∣ = ∣ ∣ f n ∣ 2 − ( f n 2 + f 2 − 2 f f n ) − ∣ f ∣ 2 ∣ = ∣ 2 f f n − 2 f 2 ∣ = 2 ∣ f ∣ ∣ f − f n ∣ . \begin{aligned}
\abs{\abs{f_n}^2 - \abs{f_n - f}^2 - \abs{f}^2}
&= \abs{\abs{f_n}^2 - \p{f_n^2 + f^2 - 2ff_n} - \abs{f}^2} \\
&= \abs{2ff_n - 2f^2} \\
&= 2\abs{f}\abs{f - f_n}.
\end{aligned} ∣ ∣ ∣ f n ∣ 2 − ∣ f n − f ∣ 2 − ∣ f ∣ 2 ∣ ∣ = ∣ ∣ ∣ f n ∣ 2 − ( f n 2 + f 2 − 2 f f n ) − ∣ f ∣ 2 ∣ ∣ = ∣ ∣ 2 f f n − 2 f 2 ∣ ∣ = 2 ∣ f ∣ ∣ f − f n ∣ .
Let M = sup n ∥ f n ∥ L 2 M = \sup_n \norm{f_n}_{L^2} M = sup n ∥ f n ∥ L 2 , and so by Fatou's lemma,
∫ ∣ f ∣ 2 ≤ lim inf n → ∞ ∫ ∣ f n ∣ 2 ≤ M 2 < ∞ \int \abs{f}^2
\leq \liminf_{n\to\infty} \int \abs{f_n}^2
\leq M^2
< \infty ∫ ∣ f ∣ 2 ≤ n → ∞ lim inf ∫ ∣ f n ∣ 2 ≤ M 2 < ∞
by assumption. In other words, f ∈ L 2 ( R 3 ) f \in L^2\p{\R^3} f ∈ L 2 ( R 3 ) . We need to analyze
∫ R 3 ∣ ∣ f n ∣ 2 − ∣ f n − f ∣ 2 − ∣ f ∣ 2 ∣ d x = ∫ R 3 2 ∣ f ∣ ∣ f − f n ∣ d x . \int_{\R^3} \abs{\abs{f_n}^2 - \abs{f_n - f}^2 - \abs{f}^2} \,\diff{x}
= \int_{\R^3} 2\abs{f}\abs{f - f_n} \,\diff{x}. ∫ R 3 ∣ ∣ ∣ f n ∣ 2 − ∣ f n − f ∣ 2 − ∣ f ∣ 2 ∣ ∣ d x = ∫ R 3 2 ∣ f ∣ ∣ f − f n ∣ d x .
Let ε > 0 \epsilon > 0 ε > 0 . Since f ∈ L 2 ( R 3 ) f \in L^2\p{\R^3} f ∈ L 2 ( R 3 ) , there exists R > 0 R > 0 R > 0 large enough so that
∫ B ( 0 , R ) c ∣ f ∣ 2 < ε . \int_{B\p{0,R}^\comp} \abs{f}^2 < \epsilon. ∫ B ( 0 , R ) c ∣ f ∣ 2 < ε .
Also, observe that E ↦ ∫ E ∣ f ∣ 2 d x E \mapsto \int_E \abs{f}^2 \,\diff{x} E ↦ ∫ E ∣ f ∣ 2 d x is a measure absolutely continuous with respect to the Lebesgue measure. Hence, there exists δ > 0 \delta > 0 δ > 0 such that if m ( E ) < δ m\p{E} < \delta m ( E ) < δ , then ∫ E ∣ f ∣ 2 d x < ε \int_E \abs{f}^2 \,\diff{x} < \epsilon ∫ E ∣ f ∣ 2 d x < ε .
On the other hand, since B ( 0 , R ) B\p{0, R} B ( 0 , R ) is a set of finite measure, Egorov's theorem gives us a set E ⊆ B ( 0 , R ) E \subseteq B\p{0, R} E ⊆ B ( 0 , R ) such that f n → f f_n \to f f n → f uniformly on B ( 0 , R ) ∖ E B\p{0, R} \setminus E B ( 0 , R ) ∖ E and m ( E ) < δ m\p{E} < \delta m ( E ) < δ , where m m m denotes the Lebesgue measure. Thus, on B ( 0 , R ) ∖ E B\p{0, R} \setminus E B ( 0 , R ) ∖ E , there exists N ∈ N N \in \N N ∈ N such that ∣ f n − f ∣ < ε \abs{f_n - f} < \epsilon ∣ f n − f ∣ < ε uniformly, and so by Cauchy-Schwarz,
∫ R 3 2 ∣ f ∣ ∣ f − f n ∣ d x = ∫ B ( 0 , R ) ∖ E 2 ∣ f ∣ ∣ f − f n ∣ d x + ∫ E 2 ∣ f ∣ ∣ f − f n ∣ d x + ∫ B ( 0 , R ) c 2 ∣ f ∣ ∣ f − f n ∣ d x ≤ 2 ∥ f ∥ L 2 ∥ ( f − f n ) χ B ( 0 , R ) ∖ E ∥ L 2 + 2 ∥ f χ E ∥ L 2 ∥ f − f n ∥ L 2 + 2 ∥ f χ B ( 0 , R ) c ∥ L 2 ∥ f − f n ∥ L 2 ≤ 2 M ε 1 / 2 + 4 M ε 1 / 2 + 4 M ε 1 / 2 = 10 M ε 1 / 2 . \begin{aligned}
\int_{\R^3} 2\abs{f}\abs{f - f_n} \,\diff{x}
&= \int_{B\p{0, R} \setminus E} 2\abs{f}\abs{f - f_n} \,\diff{x} + \int_E 2\abs{f}\abs{f - f_n} \,\diff{x} + \int_{B\p{0, R}^\comp} 2\abs{f}\abs{f - f_n} \,\diff{x} \\
&\leq 2 \norm{f}_{L^2} \norm{\p{f - f_n}\chi_{B\p{0,R} \setminus E}}_{L^2} + 2 \norm{f\chi_E}_{L^2} \norm{f - f_n}_{L^2} + 2\norm{f\chi_{B\p{0,R}^\comp}}_{L^2} \norm{f - f_n}_{L^2} \\
&\leq 2M\epsilon^{1/2} + 4M\epsilon^{1/2} + 4M\epsilon^{1/2} \\
&= 10M\epsilon^{1/2}.
\end{aligned} ∫ R 3 2 ∣ f ∣ ∣ f − f n ∣ d x = ∫ B ( 0 , R ) ∖ E 2 ∣ f ∣ ∣ f − f n ∣ d x + ∫ E 2 ∣ f ∣ ∣ f − f n ∣ d x + ∫ B ( 0 , R ) c 2 ∣ f ∣ ∣ f − f n ∣ d x ≤ 2 ∥ f ∥ L 2 ∥ ∥ ( f − f n ) χ B ( 0 , R ) ∖ E ∥ ∥ L 2 + 2 ∥ f χ E ∥ L 2 ∥ f − f n ∥ L 2 + 2 ∥ ∥ f χ B ( 0 , R ) c ∥ ∥ L 2 ∥ f − f n ∥ L 2 ≤ 2 M ε 1/2 + 4 M ε 1/2 + 4 M ε 1/2 = 10 M ε 1/2 .
Sending ε → 0 \epsilon \to 0 ε → 0 , we get the claim.