Fall 2012 - Problem 4

Fourier analysis

Fix fC(T)f \in C\p{\T} where T=R/2πZ\T = \R/2\pi\Z. Let sns_n denote the nn-th partial sums of the Fourier series of ff. Prove that

limnsnL(T)logn=0.\lim_{n\to\infty} \frac{\norm{s_n}_{L^\infty\p{\T}}}{\log{n}} = 0.
Solution.

By definition, the nn-th Fourier coefficient for ff is given by

ak=Te2πikxf(x)dxa_k = \int_\T e^{-2\pi ikx} f\p{x} \,\diff{x}

for nZn \in \Z, so sn(x)=k=nnake2πikxs_n\p{x} = \sum_{k=-n}^n a_k e^{2\pi ikx}. Observe that

ake2πikx=(Te2πikyf(y)dy)e2πikx=Te2πik(xy)f(y)dy=(e2πikyf)(x).a_ke^{2\pi ikx} = \p{\int_\T e^{-2\pi iky} f\p{y} \,\diff{y}}e^{2\pi ikx} = \int_\T e^{2\pi ik\p{x-y}} f\p{y} \,\diff{y} = \p{e^{2\pi iky} * f}\p{x}.

Thus, if Dn(x)=k=nne2πikxD_n\p{x} = \sum_{k=-n}^n e^{2\pi ikx}, we have

sn(x)=(Dnf)(x).s_n\p{x} = \p{D_n * f}\p{x}.

Notice that we have a geometric sum, so

Dn(x)=k=nn(e2πix)k=e2πinxk=02n(e2πix)k=e2πinxe2πi(2n+1)x1e2πix1=e2πi(n+1)xe2πinxe2πix1eiπxeiπx=eπi(2n+1)xeπi(2n+1)xeπixeπix=sin((2n+1)πx)sin(πx).\begin{aligned} D_n\p{x} = \sum_{k=-n}^n \p{e^{2\pi ix}}^k &= e^{-2\pi inx}\sum_{k=0}^{2n} \p{e^{2\pi ix}}^k \\ &= e^{-2\pi inx} \frac{e^{2\pi i\p{2n+1}x} - 1}{e^{2\pi ix} - 1} \\ &= \frac{e^{2\pi i\p{n+1}x} - e^{-2\pi inx}}{e^{2\pi ix} - 1} \cdot \frac{e^{-i\pi x}}{e^{-i \pi x}} \\ &= \frac{e^{\pi i\p{2n+1}x} - e^{-\pi i\p{2n+1}x}}{e^{\pi ix} - e^{-\pi ix}} \\ &= \frac{\sin\p{\p{2n+1}\pi x}}{\sin\p{\pi x}}. \end{aligned}

Moreover, by Hölder's inequality, snLDnL1fL\norm{s_n}_{L^\infty} \leq \norm{D_n}_{L^1} \norm{f}_{L^\infty}, where fL<\norm{f}_{L^\infty} < \infty since ff is continuous on a compact space, hence bounded. It remains to find a suitable bound for DnL1\norm{D_n}_{L^1}.

First, notice that sin(πx)\sin\p{\pi x} is concave on [0,12]\br{0, \frac{1}{2}}, so for t[0,1]t \in \br{0, 1},

sin(πt2)tsin(π2)=t    sin(πx)2xfor x[0,12].\sin\p{\pi \frac{t}{2}} \geq t\sin\p{\frac{\pi}{2}} = t \implies \sin\p{\pi x} \geq 2x \quad\text{for } x \in \br{0, \frac{1}{2}}.

Thus,

DnL1=1/21/2sin((2n+1)πx)sin(πx)dx=201/2sin((2n+1)πx)sin(πx)dx(evenness of sin(πx))201/2sin((2n+1)πx)2xdx=120(2n+1)/2sin(πx)xdx(x(2n+1)x)120n+1sin(πx)xdx=12k=0nkk+1sin(πx)xdx1201sin(πx)xdx+12k=1n1k1201sin(πx)xdx+12(1+1n1xdx)Clogn,\begin{aligned} \norm{D_n}_{L^1} &= \int_{-1/2}^{1/2} \abs{\frac{\sin\p{\p{2n+1}\pi x}}{\sin\p{\pi x}}} \,\diff{x} \\ &= 2\int_0^{1/2} \abs{\frac{\sin\p{\p{2n+1}\pi x}}{\sin\p{\pi x}}} \,\diff{x} && (\text{evenness of } \abs{\sin\p{\pi x}}) \\ &\leq 2\int_0^{1/2} \abs{\frac{\sin\p{\p{2n+1}\pi x}}{2x}} \,\diff{x} \\ &= \frac{1}{2} \int_0^{\p{2n+1}/2} \abs{\frac{\sin\p{\pi x}}{x}} \,\diff{x} && (x \mapsto \p{2n+1}x) \\ &\leq \frac{1}{2} \int_0^{n+1} \abs{\frac{\sin\p{\pi x}}{x}} \,\diff{x} \\ &= \frac{1}{2} \sum_{k=0}^n \int_k^{k+1} \abs{\frac{\sin\p{\pi x}}{x}} \,\diff{x} \\ &\leq \frac{1}{2} \int_0^1 \abs{\frac{\sin\p{\pi x}}{x}} \,\diff{x} + \frac{1}{2} \sum_{k=1}^n \frac{1}{k} \\ &\leq \frac{1}{2} \int_0^1 \abs{\frac{\sin\p{\pi x}}{x}} \,\diff{x} + \frac{1}{2} \p{1 + \int_1^n \frac{1}{x} \,\diff{x}} \\ &\leq C\log{n}, \end{aligned}

for CC and nn large enough and so for nn sufficiently large,

snLlognCfLlognlogn=CfL.\frac{\norm{s_n}_{L^\infty}}{\log{n}} \leq \frac{C\norm{f}_{L^\infty}\log{n}}{\log{n}} = C\norm{f}_{L^\infty}.

Let ε>0\epsilon > 0. Since T\T is compact and ff is continuous, there exists a trigonometric polynomial p(x)=j=1Ncje2πijxp\p{x} = \sum_{j=1}^N c_j e^{2\pi ijx} such that fpL<ε\norm{f - p}_{L^\infty} < \epsilon, by Stone-Weierstrass. Observe then that

bk=Te2πikxp(x)dx=j=1Ncj01e2πi(jk)xdx.b_k = \int_\T e^{-2\pi ikx} p\p{x} \,\diff{x} = \sum_{j=1}^N c_j \int_0^1 e^{-2\pi i\p{j-k}x} \,\diff{x}.

By orthogonality, bk=cjb_k = c_j if j=kj = k and 00 otherwise, so the partial sums tnt_n are eventually constant (there are at most NN of them). Hence,

tnLlogn=k=1nbke2πikxlognk=1Nbklognn0.\frac{\norm{t_n}_{L^\infty}}{\log{n}} = \frac{\abs{\sum_{k=1}^n b_k e^{2\pi ikx}}}{\log{n}} \leq \frac{\sum_{k=1}^N \abs{b_k}}{\log{n}} \xrightarrow{n\to\infty} 0.

We then see

lim supnsnLlognlim supn(sntnLlogn+tnLlogn)CfpL<ε.\limsup_{n\to\infty}\,\frac{\norm{s_n}_{L^\infty}}{\log{n}} \leq \limsup_{n\to\infty}\,\p{\frac{\norm{s_n - t_n}_{L^\infty}}{\log{n}} + \frac{\norm{t_n}_{L^\infty}}{\log{n}}} \leq C\norm{f - p}_{L^\infty} < \epsilon.

Sending ε0\epsilon \to 0, we get the claim.