Spring 2011 - Problem 9

Cantor set, Painlevé's theorem

Let E[0,1]E \subseteq \br{0, 1} denote the Cantor 'middle thirds' set; namely, the set E={i1bi3ibi=0,2}E = \set{\sum_{i\geq1} b_i3^{-i} \mid b_i = 0, 2}. Embedding [0,1]\br{0, 1} naturally into C\C, we regard EE as a subset of C\C. Suppose f ⁣:CEC\func{f}{\C \setminus E}{\C} is holomorphic and (uniformly) bounded. Show that ff is constant.

Solution.

Notice that EE has Lebesgue measure zero, i.e.,

m(E)=inf{n=1bnan|En=1(an,bn)},m\p{E} = \inf\,\set{\sum_{n=1}^\infty \abs{b_n - a_n} \st E \subseteq \bigcup_{n=1}^\infty \p{a_n, b_n}},

by outer regularity of the Lebesgue measure.

Let ε>0\epsilon > 0. Then there exists a family {B(xn,rn)}n\set{B\p{x_n, r_n}}_n of balls in C\C such that En=1B(xn,rn)E \subseteq \bigcup_{n=1}^\infty B\p{x_n, r_n} and n=1rn<ε\sum_{n=1}^\infty r_n < \epsilon. By removing balls which are disjoint from EE, we see that such a family is contained in the ball B(0,1+ε)B\p{0, 1 + \epsilon}. By compactness, there exists NNN \in \N such that En=1NB(xn,rn)E \subseteq \bigcup_{n=1}^N B\p{x_n, r_n}. Let

γε=(n=1NB(xn,rn))\gamma_\epsilon = \partial\p{\bigcup_{n=1}^N B\p{x_n, r_n}}

and orient it counter-clockwise. Let B=B(0,2)B = B\p{0, 2} so that γεB\gamma_\epsilon \subseteq B for all ε(0,1)\epsilon \in \p{0, 1}, which gives us the following annular decomposition of ff on Bn=1NB(xn,rn)B \setminus \bigcup_{n=1}^N B\p{x_n, r_n}:

f(z)=12πiBf(ζ)ζzdζ12πiγεf(ζ)ζzdζ.f\p{z} = \frac{1}{2\pi i} \int_{\partial B} \frac{f\p{\zeta}}{\zeta - z} \,\diff\zeta - \frac{1}{2\pi i} \int_{\gamma_\epsilon} \frac{f\p{\zeta}}{\zeta - z} \,\diff\zeta.

Thus, if zBEz \in B \setminus E, then d(z,E)>0d\p{z, E} > 0. If we shrink ε\epsilon to, say, smaller than a quarter of this distance, then d(z,γε)d(z,E)2δ>0d\p{z, \gamma_\epsilon} \geq \frac{d\p{z, E}}{2} \eqqcolon \delta > 0 since we required that all the balls above intersect EE. Hence,

f(z)12πiBf(ζ)ζzdζ12πγεf(ζ)ζzdζ12πfLδγε12πfLδn=1N2πrn=fLδεε00.\begin{aligned} \abs{f\p{z} - \frac{1}{2\pi i} \int_{\partial B} \frac{f\p{\zeta}}{\zeta - z} \,\diff\zeta} &\leq \frac{1}{2\pi} \int_{\gamma_\epsilon} \abs{\frac{f\p{\zeta}}{\zeta - z}} \,\diff\abs{\zeta} \\ &\leq \frac{1}{2\pi} \frac{\norm{f}_{L^\infty}}{\delta} \abs{\gamma_\epsilon} \\ &\leq \frac{1}{2\pi} \frac{\norm{f}_{L^\infty}}{\delta} \sum_{n=1}^N 2\pi r_n \\ &= \frac{\norm{f}_{L^\infty}}{\delta}\epsilon \xrightarrow{\epsilon\to0} 0. \end{aligned}

In other words, if g(z)=12πiBf(ζ)ζzdζg\p{z} = \frac{1}{2\pi i} \int_{\partial B} \frac{f\p{\zeta}}{\zeta - z} \,\diff\zeta, then gg is holomorphic on B(0,2)B\p{0, 2} and ff agrees with gg on B(0,2)EB\p{0, 2} \setminus E. Hence, ff extends to an entire function, which completes the proof.