Spring 2011 - Problem 8

subharmonic functions
  1. Define upper-semicontinuous for functions f ⁣:C[,)\func{f}{\C}{\pco{-\infty,\infty}}.

  2. Define what it means for such an upper-semicontinuous function to be subharmonic.

  3. Prove or refute (with a counterexample) each of the following:

    • The pointwise supremum of a bounded family of subharmonic functions is subharmonic.
    • The pointwise infimum of a family of subharmonic functions is subharmonic.
  4. Let A(z)A\p{z} be a 2×22 \times 2 matrix-valued holomorphic function (i.e., the entries are holomorphic). Show that

    zlog(A(z)) is subharmonicz \mapsto \log\p{\norm{A\p{z}}} \quad\text{ is subharmonic}

    where A(z)\norm{A\p{z}} is the norm as an operator on the Hilbert space C2\C^2.

Solution.
  1. ff is upper-semicontinuous if {zf(z)<a}\set{z \mid f\p{z} < a} is open for any aRa \in \R.

  2. An upper-semicontinuous function u ⁣:C[,)\func{u}{\C}{\pco{-\infty, \infty}} is subharmonic if

    u(z)12π02πu(z+reiθ)dθu\p{z} \leq \frac{1}{2\pi} \int_0^{2\pi} u\p{z + re^{i\theta}} \,\diff\theta

    for any zCz \in \C and r>0r > 0.

  3. The first one is true as long as the supremum is upper-semicontinuous. Let {uα}α\set{u_\alpha}_\alpha be such a family and denote the pointwise supremum by uu.

    Given zCz \in \C, there exists a sequence {un}n\set{u_n}_n in this family such that un(z)u(z)u_n\p{z} \to u\p{z}. Moreover, if MM is a bound for the family, then M+uα0M + u_\alpha \geq 0 for any α\alpha, so we may apply Fatou's lemma:

    M+u(z)=lim supn(M+un(z))lim supn12π02π(M+un(z+reiθ))dθ12π02πlim supn(M+un(z+reiθ))dθ12π02πM+u(z+reiθ)dθ=M+12π02πu(z+reiθ)dθ    u(z)12π02πu(z+reiθ)dθ,\begin{aligned} M + u\p{z} &= \limsup_{n\to\infty}\, \p{M + u_n\p{z}} \\ &\leq \limsup_{n\to\infty} \frac{1}{2\pi} \int_0^{2\pi} \p{M + u_n\p{z + re^{i\theta}}} \,\diff\theta \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} \limsup_{n\to\infty}\, \p{M + u_n\p{z + re^{i\theta}}} \,\diff\theta \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} M + u\p{z + re^{i\theta}} \,\diff\theta \\ &= M + \frac{1}{2\pi} \int_0^{2\pi} u\p{z + re^{i\theta}} \,\diff\theta \\ \implies u\p{z} &\leq \frac{1}{2\pi} \int_0^{2\pi} u\p{z + re^{i\theta}} \,\diff\theta, \end{aligned}

    so uu is subharmonic.

    The second one is false: consider ua(z)=Re(eaz)u_a\p{z} = \Re\p{e^{az}} indexed by aCa \in \C. Then infaua(z)=\inf_a u_a\p{z} = -\infty for z0z \neq 0, but ua(0)=1u_a\p{0} = 1 for all aCa \in \C. Then if u=infauau = \inf_a u_a,

    1=u(z)=12π02πu(z+reiθ)dθ,1 = u\p{z} \geq -\infty = \frac{1}{2\pi} \int_0^{2\pi} u\p{z + re^{i\theta}} \,\diff\theta,

    so uu is not subharmonic.

  4. Notice that because logx\log{x} is continuous,

    log(A(z))=supw=1log(A(z)w)=supw=ζ=1logA(z)w,ζ\log\p{\norm{A\p{z}}} = \sup_{\norm{w} = 1}\, \log\p{\norm{A\p{z}w}} = \sup_{\norm{w} = \norm{\zeta} = 1}\, \log\,\abs{\inner{A\p{z}w, \zeta}}

    Since A(z)A\p{z} is holomorphic, we see that A(z)w,ζ\inner{A\p{z}w, \zeta} is a composition of holomorphic functions, hence holomorphic. Thus, zlog(A(z))z \mapsto \log\p{\norm{A\p{z}}} is the logarithm of the absolute value of an analytic function, hence subharmonic.