Solution.
Fix a triangle △ \triangle △ with vertices { z 1 , z 2 , z 3 } \set{z_1, z_2, z_3} { z 1 , z 2 , z 3 } oriented counter-clockwise. Suppose otherwise, so that there exists ε > 0 \epsilon > 0 ε > 0 such that
∣ ∮ ∂ △ f ( z ) d z ∣ ≥ ε > 0. \abs{\oint_{\partial\triangle} f\p{z} \,\diff{z}} \geq \epsilon > 0. ∣ ∣ ∮ ∂ △ f ( z ) d z ∣ ∣ ≥ ε > 0.
Decompose △ 1 ≔ △ \triangle_1 \coloneqq \triangle △ 1 : = △ into four further triangles: △ 1 ( 1 ) , △ 1 ( 2 ) , △ 1 ( 3 ) , △ 1 ( 4 ) \triangle_1^{\p{1}}, \triangle_1^{\p{2}}, \triangle_1^{\p{3}}, \triangle_1^{\p{4}} △ 1 ( 1 ) , △ 1 ( 2 ) , △ 1 ( 3 ) , △ 1 ( 4 ) so that
△ 1 ( 1 ) has vertices { z 1 , z 1 + z 2 2 , z 1 + z 3 2 } △ 1 ( 2 ) has vertices { z 1 + z 2 2 , z 2 + z 3 2 , z 1 + z 3 z 2 } △ 1 ( 3 ) has vertices { z 1 + z 2 2 , z 2 , z 2 + z 3 2 } △ 1 ( 4 ) has vertices { z 1 + z 3 2 , z 2 + z 3 2 , z 3 } , \begin{aligned}
\triangle_1^{\p{1}}
& \quad\text{has vertices}\quad \set{z_1, \frac{z_1 + z_2}{2}, \frac{z_1 + z_3}{2}} \\
\triangle_1^{\p{2}}
& \quad\text{has vertices}\quad \set{\frac{z_1 + z_2}{2}, \frac{z_2 + z_3}{2}, \frac{z_1 + z_3}{z_2}} \\
\triangle_1^{\p{3}}
& \quad\text{has vertices}\quad \set{\frac{z_1 + z_2}{2}, z_2, \frac{z_2 + z_3}{2}} \\
\triangle_1^{\p{4}}
& \quad\text{has vertices}\quad \set{\frac{z_1 + z_3}{2}, \frac{z_2 + z_3}{2}, z_3},
\end{aligned} △ 1 ( 1 ) △ 1 ( 2 ) △ 1 ( 3 ) △ 1 ( 4 ) has vertices { z 1 , 2 z 1 + z 2 , 2 z 1 + z 3 } has vertices { 2 z 1 + z 2 , 2 z 2 + z 3 , z 2 z 1 + z 3 } has vertices { 2 z 1 + z 2 , z 2 , 2 z 2 + z 3 } has vertices { 2 z 1 + z 3 , 2 z 2 + z 3 , z 3 } ,
which have disjoint interiors and oriented counter-clockwise. By cancellation,
ε ≤ ∣ ∫ ∂ △ 1 f ( z ) d z ∣ = ∣ ∑ j = 1 4 ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ ≤ ∑ j = 1 4 ∣ ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ , \begin{aligned}
\epsilon
&\leq \abs{\int_{\partial\triangle_1} f\p{z} \,\diff{z}} \\
&= \abs{\sum_{j=1}^4 \int_{\partial\triangle_1^{\p{j}}} f\p{z} \,\diff{z}} \\
&\leq \sum_{j=1}^4 \abs{\int_{\partial\triangle_1^{\p{j}}} f\p{z} \,\diff{z}},
\end{aligned} ε ≤ ∣ ∣ ∫ ∂ △ 1 f ( z ) d z ∣ ∣ = ∣ ∣ j = 1 ∑ 4 ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ ∣ ≤ j = 1 ∑ 4 ∣ ∣ ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ ∣ ,
by the triangle inequality. Thus, there exists j 0 j_0 j 0 so that ∣ ∫ ∂ △ 1 ( j 0 ) f ( z ) d z ∣ ≥ ε 4 \abs{\int_{\partial\triangle_1^{\p{j_0}}} f\p{z} \,\diff{z}} \geq \frac{\epsilon}{4} ∣ ∣ ∫ ∂ △ 1 ( j 0 ) f ( z ) d z ∣ ∣ ≥ 4 ε or else the triangle inequality implies
ε ≤ ∑ j = 1 4 ∣ ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ < ∑ j = 1 4 ε 4 = ε , \epsilon
\leq \sum_{j=1}^4 \abs{\int_{\partial\triangle_1^{\p{j}}} f\p{z} \,\diff{z}}
< \sum_{j=1}^4 \frac{\epsilon}{4}
= \epsilon, ε ≤ j = 1 ∑ 4 ∣ ∣ ∫ ∂ △ 1 ( j ) f ( z ) d z ∣ ∣ < j = 1 ∑ 4 4 ε = ε ,
which is impossible. Set △ 2 = △ 1 ( j 0 ) \triangle_2 = \triangle_1^{\p{j_0}} △ 2 = △ 1 ( j 0 ) . By induction (e.g., by replacing △ \triangle △ above with △ n \triangle_n △ n ), we get a sequence of triangles { △ n } n \set{\triangle_n}_n { △ n } n such that △ n ⊇ △ n + 1 \triangle_n \supseteq \triangle_{n+1} △ n ⊇ △ n + 1 and ∣ ∫ ∂ △ n f ( z ) d z ∣ ≥ ε 4 n − 1 \abs{\int_{\partial\triangle_n} f\p{z} \,\diff{z}} \geq \frac{\epsilon}{4^{n-1}} ∣ ∣ ∫ ∂ △ n f ( z ) d z ∣ ∣ ≥ 4 n − 1 ε . Notice also that diam △ n = diam △ 1 2 n − 1 → 0 \diam{\triangle_n} = \frac{\diam{\triangle_1}}{2^{n-1}} \to 0 diam △ n = 2 n − 1 diam △ 1 → 0 as n → ∞ n \to \infty n → ∞ , so by completeness of C \C C ,
⋂ n = 1 ∞ △ 1 = { z ∗ } . \bigcap_{n=1}^\infty \triangle_1 = \set{z^*}. n = 1 ⋂ ∞ △ 1 = { z ∗ } .
Since f f f is complex differentiable, f ′ ( z ∗ ) f'\p{z^*} f ′ ( z ∗ ) exists and if we set h ( z ) = f ( z ) − f ( z ∗ ) z − z ∗ − f ′ ( z ∗ ) h\p{z} = \frac{f\p{z} - f\p{z^*}}{z - z^*} - f'\p{z^*} h ( z ) = z − z ∗ f ( z ) − f ( z ∗ ) − f ′ ( z ∗ ) , then h ( z ) → 0 h\p{z} \to 0 h ( z ) → 0 as z → z ∗ z \to z^* z → z ∗ and
f ( z ) = f ( z ∗ ) + f ′ ( z ∗ ) ( z − z ∗ ) + h ( z ) ( z − z ∗ ) . f\p{z} = f\p{z^*} + f'\p{z^*}\p{z - z^*} + h\p{z}\p{z - z^*}. f ( z ) = f ( z ∗ ) + f ′ ( z ∗ ) ( z − z ∗ ) + h ( z ) ( z − z ∗ ) .
Moreover, there exists δ > 0 \delta > 0 δ > 0 so that ∣ h ( z ) ∣ < η \abs{h\p{z}} < \eta ∣ h ( z ) ∣ < η , so because diam △ n → 0 \diam\triangle_n \to 0 diam △ n → 0 , there exists n ≥ 1 n \geq 1 n ≥ 1 such that △ n ⊆ B ( z ∗ , δ ) \triangle_n \subseteq B\p{z^*, \delta} △ n ⊆ B ( z ∗ , δ ) . Observe that by the fundamental theorem of calculus, ∫ γ a z + b d z = 0 \int_\gamma az + b \,\diff{z} = 0 ∫ γ a z + b d z = 0 for any closed curve γ \gamma γ . Hence,
ε 4 n − 1 ≤ ∣ ∫ ∂ △ n f ( z ) d z ∣ = ∣ ∫ ∂ △ n f ( z ∗ ) + f ′ ( z ∗ ) ( z − z ∗ ) + h ( z ) ( z − z ∗ ) d z ∣ = ∣ ∫ ∂ △ n h ( z ) ( z − z ∗ ) d z ∣ ≤ η ∫ ∂ △ n sup z ∈ ∂ △ n ∣ z − z ∗ ∣ d ∣ z ∣ ≤ η ( diam △ n ) 2 ≤ η ( diam △ 1 ) 2 4 n − 1 ⟹ ε ≤ η ( diam △ 1 ) 2 . \begin{aligned}
\frac{\epsilon}{4^{n-1}}
&\leq \abs{\int_{\partial\triangle_n} f\p{z} \,\diff{z}} \\
&= \abs{\int_{\partial\triangle_n} f\p{z^*} + f'\p{z^*}\p{z - z^*} + h\p{z}\p{z - z^*} \,\diff{z}} \\
&= \abs{\int_{\partial\triangle_n} h\p{z}\p{z - z^*} \,\diff{z}} \\
&\leq \eta \int_{\partial\triangle_n} \sup_{z \in \partial\triangle_n} \abs{z - z^*} \,\diff\abs{z} \\
&\leq \eta \p{\diam\triangle_n}^2 \\
&\leq \frac{\eta\p{\diam{\triangle_1}}^2}{4^{n-1}} \\
\implies
\epsilon
&\leq \eta\p{\diam{\triangle_1}}^2.
\end{aligned} 4 n − 1 ε ⟹ ε ≤ ∣ ∣ ∫ ∂ △ n f ( z ) d z ∣ ∣ = ∣ ∣ ∫ ∂ △ n f ( z ∗ ) + f ′ ( z ∗ ) ( z − z ∗ ) + h ( z ) ( z − z ∗ ) d z ∣ ∣ = ∣ ∣ ∫ ∂ △ n h ( z ) ( z − z ∗ ) d z ∣ ∣ ≤ η ∫ ∂ △ n z ∈ ∂ △ n sup ∣ z − z ∗ ∣ d ∣ z ∣ ≤ η ( diam △ n ) 2 ≤ 4 n − 1 η ( diam △ 1 ) 2 ≤ η ( diam △ 1 ) 2 .
Letting η → 0 \eta \to 0 η → 0 , however, we see that ε = 0 \epsilon = 0 ε = 0 , which is impossible. Thus, ε \epsilon ε must have been 0 0 0 to begin with, which completes the proof.