Spring 2011 - Problem 4

Fatou's lemma, Lp spaces

Let fn ⁣:[0,1][0,)\func{f_n}{\br{0,1}}{\pco{0,\infty}} be Borel functions with

supn01fn(x)log(2+fn(x))dx<.\sup_n \int_0^1 f_n\p{x} \log\p{2 + f_n\p{x}} \,\diff{x} < \infty.

Suppose fnff_n \to f Lebesgue almost everywhere. Show that fL1f \in L^1 and fnff_n \to f in the L1L^1 sense.

Hint: Consider gn(x)=max(fn(x),λ)g_n\p{x} = \max\,\p{f_n\p{x}, \lambda} for certain choices of λ\lambda.

Solution.

Set

C=supn01fn(x)log(2+fn(x))dx.C = \sup_n \int_0^1 f_n\p{x} \log\p{2 + f_n\p{x}} \,\diff{x}.

Since fn0f_n \geq 0, we see that log(2+fn)log20\log\p{2 + f_n} \geq \log{2} \geq 0. Thus, we may apply Fatou's lemma to get

log(2)01f(x)log(2)dx01f(x)log(2+f(x))dx=01lim infn(fn(x)log(2+fn(x)))dx(fnf and continuity of logx)lim infn01fn(x)log(2+fn(x))dxC<,\begin{aligned} \log\p{2}\int_0^1 f\p{x}\log\p{2} \,\diff{x} &\leq \int_0^1 f\p{x}\log\p{2 + f\p{x}} \,\diff{x} \\ &= \int_0^1 \liminf_{n\to\infty}\, \p{f_n\p{x}\log\p{2 + f_n\p{x}}} \,\diff{x} && (f_n \to f \text{ and continuity of } \log{x}) \\ &\leq \liminf_{n\to\infty} \int_0^1 f_n\p{x} \log\p{2 + f_n\p{x}} \,\diff{x} \\ &\leq C \\ &< \infty, \end{aligned}

so fL1([0,1])f \in L^1\p{\br{0,1}}. To show convergence in L1L^1, first notice that for λ>0\lambda > 0,

fnfL1fnχ{fn>λ}L1+fnχ{fnλ}fχ{fλ}L1+fχ{f>λ}L1.\norm{f_n - f}_{L^1} \leq \norm{f_n\chi_{\set{f_n > \lambda}}}_{L^1} + \norm{f_n\chi_{\set{f_n \leq \lambda}} - f\chi_{\set{f \leq \lambda}}}_{L^1} + \norm{f\chi_{\set{f > \lambda}}}_{L^1}.

Let ε>0\epsilon > 0. For the first term, we have

fnχ{fn>λ}L1={fn>λ}fn(x)log(2+fn(x))log(2+fn(x))dx1log(2+λ){fn>λ}fn(x)log(2+fn(x))dxClog(2+λ)λ0.\begin{aligned} \norm{f_n\chi_{\set{f_n > \lambda}}}_{L^1} &= \int_{\set{f_n > \lambda}} f_n\p{x} \cdot \frac{\log\p{2 + f_n\p{x}}}{\log\p{2 + f_n\p{x}}} \,\diff{x} \\ &\leq \frac{1}{\log\p{2 + \lambda}} \int_{\set{f_n > \lambda}} f_n\p{x} \log\p{2 + f_n\p{x}} \,\diff{x} \\ &\leq \frac{C}{\log\p{2 + \lambda}} \xrightarrow{\lambda\to\infty} 0. \end{aligned}

Thus, we may pick λ>0\lambda > 0 so that this term is smaller than ε\epsilon.

Next, notice that fnχ{fnλ}fχ{fλ}f_n\chi_{\set{f_n \leq \lambda}} \to f\chi_{\set{f \leq \lambda}} almost everywhere. Indeed, if xx is such that fn(x)f(x)f_n\p{x} \to f\p{x}, then there are three cases: if f(x)>λf\p{x} > \lambda, then for nn large enough, we must have fn(x)>λf_n\p{x} > \lambda as well, so fn(x)χ{fnλ}(x)=0=f(x)χ{fλ}f_n\p{x}\chi_{\set{f_n \leq \lambda}}\p{x} = 0 = f\p{x}\chi_{\set{f \leq \lambda}}. If f(x)=λf\p{x} = \lambda, then fn(x)χ{fnλ}(x)=λf_n\p{x}\chi_{\set{f_n \leq \lambda}}\p{x} = \lambda or fn(x)f_n\p{x}, both of which converge to λ\lambda. Finally, if f(x)<λf\p{x} < \lambda, then eventually fn(x)<λf_n\p{x} < \lambda, so fn(x)χ{fnλ}(x)=fn(x)f(x)=f(x)χ{fλ}f_n\p{x}\chi_{\set{f_n \leq \lambda}}\p{x} = f_n\p{x} \to f\p{x} = f\p{x}\chi_{\set{f \leq \lambda}}. Moreover, fnχ{fnλ}λL1([0,1])f_n\chi_{\set{f_n \leq \lambda}} \leq \lambda \in L^1\p{\br{0, 1}}, so by dominated convergence, the second term vanishes as nn \to \infty.

Finally, observe that ffχ{f<n}0\abs{f - f\chi_{\set{f < n}}} \to 0 almost everywhere and ffχ{f<n}2fL1([0,1])\abs{f - f\chi_{\set{f < n}}} \leq 2f \in L^1\p{\br{0,1}}, so by dominated convergence,

fχ{fn}dxffχ{f<n}dxn0.\abs{\int f\chi_{\set{f \geq n}} \,\diff{x}} \leq \int \abs{f - f\chi_{\set{f < n}}} \,\diff{x} \xrightarrow{n\to\infty} 0.

Thus, making λ\lambda larger if necessary, we have fχ{f>λ}L1<ε\norm{f\chi_{\set{f > \lambda}}}_{L^1} < \epsilon. Hence,

lim supnfnfL12ε.\limsup_{n\to\infty}\, \norm{f_n - f}_{L^1} \leq 2\epsilon.

Sending ε0\epsilon \to 0, we get fnff_n \to f in L1L^1.