Spring 2011 - Problem 11

residue theorem, Riemann Zeta function

Consider the function defined for s(1,)s \in \p{1, \infty} by

f(s)=0xs1ex1dx.f\p{s} = \int_0^\infty \frac{x^{s-1}}{e^x - 1} \,\diff{x}.

Show that ff has an analytic continuation to {sCRes>0,s1}\set{s \in \C \mid \Re{s} > 0, s \neq 1} with a simple pole at s=1s = 1. Compute the residue at s=1s = 1.

Solution.

We have as1=e(s1)logaa^{s-1} = e^{\p{s-1}\log{a}} for a>0a > 0. We split ff up into

f(s)=01xs1ex1dx+1xs1ex1dxI1(s)+I2(s).f\p{s} = \int_0^1 \frac{x^{s-1}}{e^x - 1} \,\diff{x} + \int_1^\infty \frac{x^{s-1}}{e^x - 1} \,\diff{x} \eqqcolon I_1\p{s} + I_2\p{s}.

Notice that

I2(s)=(1n=0(logx)nex1dx)(s1)n=n=0(1(logx)nex1dx)(s1)n,I_2\p{s} = \p{\int_1^\infty \sum_{n=0}^\infty \frac{\p{\log{x}}^n}{e^x - 1} \,\diff{x}}\p{s - 1}^n = \sum_{n=0}^\infty \p{\int_1^\infty \frac{\p{\log{x}}^n}{e^x - 1} \,\diff{x}}\p{s - 1}^n,

by the monotone convergence theorem, since each term in the sum is non-negative. Since I2I_2 has no singularities, this series expansion is valid on the entire complex plane, so I2I_2 is entire.

It remains to show that I1I_1 is analytic on the right-half plane except at s=1s = 1. Observe that

g(s)I1(s)1s1=01xs1(1ex11x)dx.g\p{s} \coloneqq I_1\p{s} - \frac{1}{s - 1} = \int_0^1 x^{s-1}\p{\frac{1}{e^x - 1} - \frac{1}{x}} \,\diff{x}.

Then by L'Hôpital's,

limx0(1ex11x)=limx0xex+1x(ex1)=limx01exex1+xex=limx0exex+ex+xex=12,\lim_{x\to0}\,\p{\frac{1}{e^x - 1} - \frac{1}{x}} = \lim_{x\to0} \frac{x - e^x + 1}{x\p{e^x - 1}} = \lim_{x\to0} \frac{1 - e^x}{e^x - 1 + xe^x} = \lim_{x\to0} \frac{-e^x}{e^x + e^x + xe^x} = -\frac{1}{2},

so the integrand is continuous on [0,1]\br{0, 1}, and so gg is well-defined. Hence, the integral converges whenever s1>1    s>0s - 1 > 1 \implies s > 0 and so gg is analytic on Res>0\Re{s} > 0 by differentiating under the integral sign. We then have the representation

I1(s)=g(s)+1s1,I_1\p{s} = g\p{s} + \frac{1}{s - 1},

so I1(s)I_1\p{s} is analytic on Res>0\Re{s} > 0 except at s=1s = 1, and it has a simple pole at s=1s = 1, and so f(s)f\p{s} satisfies the same properties. To calculate the residue at s=1s = 1,

lims1(s1)f(s)=lims1((s1)g(s)+1+(s1)I2(s))=1,\lim_{s\to1}\,\p{s - 1}f\p{s} = \lim_{s\to1}\, \p{\p{s - 1}g\p{s} + 1 + \p{s - 1}I_2\p{s}} = 1,

and this completes the proof.