Spring 2011 - Problem 10

Schwarz lemma

Let D={zz<1}\D = \set{z \mid \abs{z} < 1} and let Ω={zDImz>0}\Omega = \set{z \in \D \mid \Im{z} > 0}. Evaluate

sup{Ref(i2)|f ⁣:ΩD is holomorphic}.\sup\,\set{\Re{f'\p{\frac{i}{2}}} \st \func{f}{\Omega}{\D} \text{ is holomorphic}}.
Solution.

First, notice that this set is non-empty: if f(z)=ziz+if\p{z} = \frac{z-i}{z+i}, then it ff is a holomorphic map ΩD\Omega \to \D. It suffices to maximize f(i2)\abs{f'\p{\frac{i}{2}}}, since by composing with a suitable rotation, the resulting function will maximize Ref(i2)\Re{f'\p{\frac{i}{2}}}.

Let f ⁣:ΩD\func{f}{\Omega}{\D} be holomorphic and for aDa \in \D, consider the Blaschke factor φa ⁣:DD\func{\phi_a}{\D}{\D},

φa(z)=za1az\phi_a\p{z} = \frac{z - a}{1 - \conj{a}z}

which is an automorphism of D\D that sends aa to 00. Notice also that

φa(z)=1az+(za)a(1az)2=1a2(1az)2    φa(a)=1a2(1a2)2=11a2.\phi_a'\p{z} = \frac{1 - \conj{a}z + \p{z - a}\conj{a}}{\p{1 - \conj{a}z}^2} = \frac{1 - \abs{a}^2}{\p{1 - \conj{a}z}^2} \implies \phi_a'\p{a} = \frac{1 - \abs{a}^2}{\p{1 - \abs{a}^2}^2} = \frac{1}{1 - \abs{a}^2}.

Let ψ1(z)=zi2z+i2\psi^{-1}\p{z} = \frac{z - \frac{i}{2}}{z + \frac{i}{2}}, which is a conformal map ΩD\Omega \to \D that sends i2\frac{i}{2} to 00 with inverse

ψ(z)=i2(1+w1w).\psi\p{z} = \frac{i}{2} \p{\frac{1 + w}{1 - w}}.

We also have

ψ(z)=i2(1w+1+w(1w)2)=i(1w)2.\psi'\p{z} = \frac{i}{2} \p{\frac{1 - w + 1 + w}{\p{1 - w}^2}} = \frac{i}{\p{1 - w}^2}.

Hence, g=φf(i/2)fψ ⁣:DDg = \func{\phi_{f\p{i/2}} \circ f \circ \psi}{\D}{\D} satisfies g(0)=0g\p{0} = 0. By the Schwarz lemma,

1(φf(i/2)fψ)(0)=φf(i/2)((fψ)(0))f(ψ(0))ψ(0)=φf(i/2)(f(i2))f(i2)i=f(i2)1f(i2)2f(i2).\begin{aligned} 1 &\geq \abs{\p{\phi_{f\p{i/2}} \circ f \circ \psi}'\p{0}} \\ &= \abs{\phi_{f\p{i/2}}'\p{\p{f \circ \psi}\p{0}} f'\p{\psi\p{0}} \psi'\p{0}} \\ &= \abs{\phi_{f\p{i/2}}'\p{f\p{\frac{i}{2}}} f'\p{\frac{i}{2}} i} \\ &= \frac{\abs{f'\p{\frac{i}{2}}}}{1 - \abs{f\p{\frac{i}{2}}}^2} \\ &\geq \abs{f'\p{\frac{i}{2}}}. \end{aligned}

So 11 is an upper bound for our quantity of interest. On the other hand,

(ψ1)(z)=z+i2z+i2(z+i2)2=i(z+i2)2    (ψ1)(i2)=1,\p{\psi^{-1}}'\p{z} = \frac{z + \frac{i}{2} - z + \frac{i}{2}}{\p{z + \frac{i}{2}}^2} = \frac{i}{\p{z + \frac{i}{2}}^2} \implies \abs{\p{\psi^{-1}}'\p{\frac{i}{2}}} = 1,

so the upper bound is attained. Hence, the supremum is 11, which completes the proof.