Spring 2011 - Problem 1

Arzelà-Ascoli, Banach-Steinhaus
  1. Define what it means to say that fnff_n \to f weakly in L2([0,1])L^2\p{\br{0,1}}.

  2. Suppose fnL2([0,1])f_n \in L^2\p{\br{0,1}} converge weakly to fL2([0,1])f \in L^2\p{\br{0,1}} and define primitive functions:

    Fn(x)=0xfn(t)dtandF(x)=0xf(t)dt.F_n\p{x} = \int_0^x f_n\p{t} \,\diff{t} \quad\text{and}\quad F\p{x} = \int_0^x f\p{t} \,\diff{t}.

    Show that Fn,FC([0,1])F_n, F \in C\p{\br{0,1}} and that FnFF_n \to F uniformly on [0,1]\br{0, 1}.

Solution.
  1. fnff_n \to f weakly in L2([0,1])L^2\p{\br{0,1}} if for every gL2([0,1])g \in L^2\p{\br{0,1}}, we have

    fngdtnfgdt.\int f_ng \,\diff{t} \xrightarrow{n\to\infty} \int fg \,\diff{t}.
  2. Notice that by weak convergence, supnfn,g<\sup_n \abs{\inner{f_n, g}} < \infty for any gL2([0,1])g \in L^2\p{\br{0,1}}. L2([0,1])L^2\p{\br{0,1}} is its own dual, we may view {fn}n(L2([0,1]))\set{f_n}_n \subseteq \p{L^2\p{\br{0,1}}}^* and so by the uniform boundedness principle,

    supnfn,g<gL2([0,1])    MsupnfnL2<.\sup_n\, \abs{\inner{f_n, g}} < \infty \quad \forall g \in L^2\p{\br{0,1}} \implies M \coloneqq \sup_n\,\norm{f_n}_{L^2} < \infty.

    Thus for x0[0,1]x_0 \in \br{0, 1}, Cauchy-Schwarz gives

    Fn(x)Fn(x0)xx0fn(t)dtχ[x,x0]L2fnL2Mxx01/2xx00.\abs{F_n\p{x} - F_n\p{x_0}} \leq \abs{\int_x^{x_0} f_n\p{t} \,\diff{t}} \leq \norm{\chi_{\br{x,x_0}}}_{L^2}\norm{f_n}_{L^2} \leq M\abs{x - x_0}^{1/2} \xrightarrow{x\to x_0} 0.

    Notice that the upper bound is uniform over n1n \geq 1, so {Fn}n\set{F_n}_n is actually equicontinuous. Similarly,

    Fn(x)01fn(t)dtfnL2M,\abs{F_n\p{x}} \leq \int_0^1 \abs{f_n\p{t}} \,\diff{t} \leq \norm{f_n}_{L^2} \leq M,

    so {Fn}n\set{F_n}_n is uniformly bounded. By Arzelà-Ascoli, {Fn}n\set{F_n}_n admits a uniformly convergent subsequence. Moreover, since χ[0,x]L2([0,1])\chi_{\br{0,x}} \in L^2\p{\br{0,1}}, weak convergence also implies

    Fn(x)=fn(t)χ[0,x](t)dtnf(t)χ[0,x](t)dt=F(x).F_n\p{x} = \int f_n\p{t} \chi_{\br{0,x}}\p{t} \,\diff{t} \xrightarrow{n\to\infty} \int f\p{t} \chi_{\br{0,x}}\p{t} \,\diff{t} = F\p{x}.

    Thus, any convergent subsequence of {Fn}n\set{F_n}_n must converge to FF. This implies that FnFF_n \to F uniformly itself. Otherwise, there exists ε>0\epsilon > 0 such that there exists xn1[0,1]x_{n_1} \in \br{0, 1} with Fn1(xn1)F(xn1)ε\abs{F_{n_1}\p{x_{n_1}} - F\p{x_{n_1}}} \geq \epsilon. By induction, we get a subsequence nkn_k such that Fnk(xnk)F(xnk)ε\abs{F_{n_k}\p{x_{n_k}} - F\p{x_{n_k}}} \geq \epsilon for all k1k \geq 1, so no subsequence of {Fnk}k\set{F_{n_k}}_k may converge uniformly to FF. But by Arzelà-Ascoli, {Fnk}k\set{F_{n_k}}_k must admit a uniformly convergent subsequence to FF, a contradiction. Hence, FnFF_n \to F uniformly to begin with, which completes the proof.