Fall 2011 - Problem 4

Cauchy-Schwarz

Let fC([0,)×[0,1])f \in C^\infty\p{\pco{0, \infty} \times \br{0, 1}} such that

001tf(t,x)2(1+t2)dxdt<.\int_0^\infty \int_0^1 \abs{\partial_t f\p{t, x}}^2 \p{1 + t^2} \,\diff{x} \,\diff{t} < \infty.

Prove that there exists a function gL2([0,1])g \in L^2\p{\br{0,1}} such that f(t,)f\p{t, \:\cdot\:} converges to g()g\p{\:\cdot\:} in L2([0,1])L^2\p{\br{0,1}} as tt \to \infty.

Solution.

Because L2([0,1])L^2\p{\br{0,1}} is complete, it suffices to show that {xf(t,x)}t\set{x \mapsto f\p{t, x}}_t is Cauchy in L2([0,1])L^2\p{\br{0,1}}.

Let t1t2t_1 \leq t_2. First notice that by Cauchy-Schwarz,

t1t2tf(t,x)dt=0χ[t1,t2]1+t2tf(t,x)1+t2dt=(t1t211+t2dt)1/2(0tf(t,x)2(1+t2)dt)1/2(arctant2arctant1)1/2(0tf(t,x)2(1+t2)dt)1/2.\begin{aligned} \int_{t_1}^{t_2} \abs{\partial_t f\p{t, x}} \,\diff{t} &= \int_0^\infty \frac{\chi_{\br{t_1,t_2}}}{\sqrt{1 + t^2}} \abs{\partial_t f\p{t, x}}\sqrt{1 + t^2} \,\diff{t} \\ &= \p{\int_{t_1}^{t_2} \frac{1}{1 + t^2} \,\diff{t}}^{1/2} \p{\int_0^\infty \abs{\partial_t f\p{t, x}}^2\p{1 + t^2} \,\diff{t}}^{1/2} \\ &\leq \p{\arctan{t_2} - \arctan{t_1}}^{1/2} \p{\int_0^\infty \abs{\partial_t f\p{t, x}}^2\p{1 + t^2} \,\diff{t}}^{1/2}. \end{aligned}

Then by the fundamental theorem of calculus,

f(t1,)f(t2,)L22=01f(t1,x)f(t2,x)2dx01(t1t2tf(t,x)dt)2dx(arctant2arctant1)010tf(t,x)2(1+t2)dtdx=(arctant2arctant1)001tf(t,x)2(1+t2)dxdt.(Fubini-Tonelli)\begin{aligned} \norm{f\p{t_1, \:\cdot\:} - f\p{t_2, \:\cdot\:}}_{L^2}^2 &= \int_0^1 \abs{f\p{t_1, x} - f\p{t_2, x}}^2 \,\diff{x} \\ &\leq \int_0^1 \p{\int_{t_1}^{t_2} \abs{\partial_t f\p{t, x}} \,\diff{t}}^2 \,\diff{x} \\ &\leq \p{\arctan{t_2} - \arctan{t_1}} \int_0^1 \int_0^\infty \abs{\partial_t f\p{t, x}}^2\p{1 + t^2} \,\diff{t} \,\diff{x} \\ &= \p{\arctan{t_2} - \arctan{t_1}} \int_0^\infty \int_0^1 \abs{\partial_t f\p{t, x}}^2\p{1 + t^2} \,\diff{x} \,\diff{t}. && (\text{Fubini-Tonelli}) \end{aligned}

The integral is bounded by assumption, so this tends to 00 as t1,t2t_1, t_2 \to \infty since arctantπ2\arctan{t} \to \frac{\pi}{2}. Hence, {xf(t1,x)}t\set{x \mapsto f\p{t_1, x}}_t is Cauchy in L2([0,1])L^2\p{\br{0,1}}, which this completes the proof.