Fall 2011 - Problem 12

Cauchy estimates

A holomorphic function f ⁣:CC\func{f}{\C}{\C} is said to be of exponential type if there are constants c1,c2>0c_1, c_2 > 0 such that

f(z)c1ec2zfor allzC.\abs{f\p{z}} \leq c_1e^{c_2\abs{z}} \quad\text{for all}\quad z \in \C.

Show that ff is of exponential type if and only of ff' is of exponential type.

Solution.

"    \implies"

Suppose ff is of exponential type with constants c1,c2c_1, c_2. Let zCz \in \C and C(z,R)C\p{z, R} the circle of radius RR centered at zz. We get the Cauchy estimate

f(z)=12πiC(z,R)f(ζ)(ζz)2dζ12π2πRsupζC(z,R)c1ec2ζR2c1Rec2z+c2R=(c1Rec2R)ec2z.\begin{aligned} \abs{f'\p{z}} &= \abs{\frac{1}{2\pi i} \int_{C\p{z,R}} \frac{f\p{\zeta}}{\p{\zeta - z}^2} \,\diff\zeta} \\ &\leq \frac{1}{2\pi} \cdot 2\pi R \cdot \sup_{\zeta \in C\p{z,R}} \frac{c_1e^{c_2\abs{\zeta}}}{R^2} \\ &\leq \frac{c_1}{R}e^{c_2\abs{z}+c_2R} \\ &= \p{\frac{c_1}{R}e^{c_2R}}e^{c_2\abs{z}}. \end{aligned}

Since R>0R > 0 is a fixed constant, ff' is of exponential type.

"    \impliedby"

Suppose ff' is of exponential type with constants c1,c2c_1, c_2 and let zCz \in \C. Consider the segment γ\gamma parametrized by ttzt \mapsto tz, so that by the fundamental theorem of calculus,

f(z)=f(0)+γf(z)dz.f\p{z} = f\p{0} + \int_{\gamma} f'\p{z} \,\diff{z}.

Then

f(z)f(0)+γf(z)dzf(0)+zc1ec2zf(0)e(c2+1)z+c1e(c2+1)z=(f(0)+c1)e(c1+1)z,\begin{aligned} \abs{f\p{z}} &\leq \abs{f\p{0}} + \int_\gamma \abs{f'\p{z}} \,\diff\abs{z} \\ &\leq \abs{f\p{0}} + \abs{z}c_1e^{c_2\abs{z}} \\ &\leq \abs{f\p{0}}e^{\p{c_2+1}\abs{z}} + c_1e^{\p{c_2+1}\abs{z}} \\ &= \p{\abs{f\p{0}} + c_1}e^{\p{c_1+1}\abs{z}}, \end{aligned}

since exxe^x \geq x and ex1e^x \geq 1 for x0x \geq 0. Hence, ff is of exponential type as well.