Solution.
" ⟹ \implies ⟹ "
Suppose f f f is of exponential type with constants c 1 , c 2 c_1, c_2 c 1 , c 2 . Let z ∈ C z \in \C z ∈ C and C ( z , R ) C\p{z, R} C ( z , R ) the circle of radius R R R centered at z z z . We get the Cauchy estimate
∣ f ′ ( z ) ∣ = ∣ 1 2 π i ∫ C ( z , R ) f ( ζ ) ( ζ − z ) 2 d ζ ∣ ≤ 1 2 π ⋅ 2 π R ⋅ sup ζ ∈ C ( z , R ) c 1 e c 2 ∣ ζ ∣ R 2 ≤ c 1 R e c 2 ∣ z ∣ + c 2 R = ( c 1 R e c 2 R ) e c 2 ∣ z ∣ . \begin{aligned}
\abs{f'\p{z}}
&= \abs{\frac{1}{2\pi i} \int_{C\p{z,R}} \frac{f\p{\zeta}}{\p{\zeta - z}^2} \,\diff\zeta} \\
&\leq \frac{1}{2\pi} \cdot 2\pi R \cdot \sup_{\zeta \in C\p{z,R}} \frac{c_1e^{c_2\abs{\zeta}}}{R^2} \\
&\leq \frac{c_1}{R}e^{c_2\abs{z}+c_2R} \\
&= \p{\frac{c_1}{R}e^{c_2R}}e^{c_2\abs{z}}.
\end{aligned} ∣ f ′ ( z ) ∣ = ∣ ∣ 2 πi 1 ∫ C ( z , R ) ( ζ − z ) 2 f ( ζ ) d ζ ∣ ∣ ≤ 2 π 1 ⋅ 2 π R ⋅ ζ ∈ C ( z , R ) sup R 2 c 1 e c 2 ∣ ζ ∣ ≤ R c 1 e c 2 ∣ z ∣ + c 2 R = ( R c 1 e c 2 R ) e c 2 ∣ z ∣ .
Since R > 0 R > 0 R > 0 is a fixed constant, f ′ f' f ′ is of exponential type.
" ⟸ \impliedby ⟸ "
Suppose f ′ f' f ′ is of exponential type with constants c 1 , c 2 c_1, c_2 c 1 , c 2 and let z ∈ C z \in \C z ∈ C . Consider the segment γ \gamma γ parametrized by t ↦ t z t \mapsto tz t ↦ t z , so that by the fundamental theorem of calculus,
f ( z ) = f ( 0 ) + ∫ γ f ′ ( z ) d z . f\p{z}
= f\p{0} + \int_{\gamma} f'\p{z} \,\diff{z}. f ( z ) = f ( 0 ) + ∫ γ f ′ ( z ) d z .
Then
∣ f ( z ) ∣ ≤ ∣ f ( 0 ) ∣ + ∫ γ ∣ f ′ ( z ) ∣ d ∣ z ∣ ≤ ∣ f ( 0 ) ∣ + ∣ z ∣ c 1 e c 2 ∣ z ∣ ≤ ∣ f ( 0 ) ∣ e ( c 2 + 1 ) ∣ z ∣ + c 1 e ( c 2 + 1 ) ∣ z ∣ = ( ∣ f ( 0 ) ∣ + c 1 ) e ( c 1 + 1 ) ∣ z ∣ , \begin{aligned}
\abs{f\p{z}}
&\leq \abs{f\p{0}} + \int_\gamma \abs{f'\p{z}} \,\diff\abs{z} \\
&\leq \abs{f\p{0}} + \abs{z}c_1e^{c_2\abs{z}} \\
&\leq \abs{f\p{0}}e^{\p{c_2+1}\abs{z}} + c_1e^{\p{c_2+1}\abs{z}} \\
&= \p{\abs{f\p{0}} + c_1}e^{\p{c_1+1}\abs{z}},
\end{aligned} ∣ f ( z ) ∣ ≤ ∣ f ( 0 ) ∣ + ∫ γ ∣ f ′ ( z ) ∣ d ∣ z ∣ ≤ ∣ f ( 0 ) ∣ + ∣ z ∣ c 1 e c 2 ∣ z ∣ ≤ ∣ f ( 0 ) ∣ e ( c 2 + 1 ) ∣ z ∣ + c 1 e ( c 2 + 1 ) ∣ z ∣ = ( ∣ f ( 0 ) ∣ + c 1 ) e ( c 1 + 1 ) ∣ z ∣ ,
since e x ≥ x e^x \geq x e x ≥ x and e x ≥ 1 e^x \geq 1 e x ≥ 1 for x ≥ 0 x \geq 0 x ≥ 0 . Hence, f f f is of exponential type as well.