Fall 2011 - Problem 10

Riemann mapping theorem, Schwarz lemma

Let ΩC\Omega \subseteq \C be a simply connected domain with ΩC\Omega \neq \C, and f ⁣:ΩΩ\func{f}{\Omega}{\Omega} be a holomorphic mapping. Suppose that there exist points z1,z2Ωz_1, z_2 \in \Omega, z1z2z_1 \neq z_2, with f(z1)=z1f\p{z_1} = z_1 and f(z2)=z2f\p{z_2} = z_2. Show that ff is the identity on Ω\Omega, i.e., f(z)=zf\p{z} = z for all zΩz \in \Omega.

Solution.

By the Riemann mapping theorem, there exists a conformal map φ ⁣:ΩD\func{\phi}{\Omega}{\D}. Hence, g=φfφ1 ⁣:DD\func{g = \phi \circ f \circ \phi^{-1}}{\D}{\D} is a holomorphic map. Thus,

g(φ(zj))=φ(f(zj))=φ(zj)g\p{\phi\p{z_j}} = \phi\p{f\p{z_j}} = \phi\p{z_j}

for j=1,2j = 1, 2. For aDa \in \D, consider the Blaschke factor ψa ⁣:DD\func{\psi_a}{\D}{\D} given by

ψa(z)=za1az,\psi_a\p{z} = \frac{z - a}{1 - \conj{a}z},

which is an automorphism of the disk that maps aa to 00. Consider h=ψφ(z1)gψφ(z1)1 ⁣:DD\func{h = \psi_{\phi\p{z_1}} \circ g \circ \psi_{\phi\p{z_1}}^{-1}}{\D}{\D}, and notice that

h(0)=(ψφ(z1)g)(φ(z1))=ψφ(z1)(φ(z1))=0.h\p{0} = \p{\psi_{\phi\p{z_1}} \circ g}\p{\phi\p{z_1}} = \psi_{\phi\p{z_1}}\p{\phi\p{z_1}} = 0.

Moreover,

h(ψφ(z1)(φ(z2)))=(ψφ(z1)g)(φ(z2))=ψφ(z1)(φ(z2)),h\p{\psi_{\phi\p{z_1}}\p{\phi\p{z_2}}} = \p{\psi_{\phi\p{z_1}} \circ g}\p{\phi\p{z_2}} = \psi_{\phi\p{z_1}}\p{\phi\p{z_2}},

so ψφ(z1)(φ(z2))\psi_{\phi\p{z_1}}\p{\phi\p{z_2}} is a fixed point of hh. By the Schwarz lemma, this implies that hh is the identity, and so

id=h=ψφ(z1)gψφ(z1)1    g=id.\id = h = \psi_{\phi\p{z_1}} \circ g \circ \psi_{\phi\p{z_1}}^{-1} \implies g = \id.

Similarly,

id=g=φfφ1    f=id,\id = g = \phi \circ f \circ \phi^{-1} \implies f = \id,

which completes the proof.