Fall 2011 - Problem 1

Egorov's theorem

Prove Egorov's theorem, that is:

Consider a sequence of measurable functions fn ⁣:[0,1]R\func{f_n}{\br{0,1}}{\R} that converge (Lebesgue) almost everywhere to a measurable function f ⁣:[0,1]R\func{f}{\br{0,1}}{\R}. Then for any ε>0\epsilon > 0, there exists a measurable set E[0,1]E \subseteq \br{0, 1} with measure E<ε\abs{E} < \epsilon such that fnf_n converge uniformly on [0,1]E\br{0, 1} \setminus E.

Solution.

Fix ε>0\epsilon > 0.

Let En(k)=mn{xfm(x)f(x)1k}E_n\p{k} = \bigcup_{m \geq n} \set{x \mid \abs{f_m\p{x} - f\p{x}} \geq \frac{1}{k}}. Observe that xn1En(k)x \in \bigcap_{n\geq1} E_n\p{k} if and only if for all n1n \geq 1, there exists mnm \geq n such that fm(x)f(x)1k\abs{f_m\p{x} - f\p{x}} \geq \frac{1}{k}, i.e., xx is not a point of convergence for {fn}n\set{f_n}_n. Since fnff_n \to f Lebesgue almost everywhere, En+1(k)En(k)E_{n+1}\p{k} \subseteq E_n\p{k}, and m([0,1])<m\p{\br{0, 1}} < \infty (mm denotes the Lebesgue measure), we have

limnm(En(k))=m(n1En(k))=0.\lim_{n\to\infty} m\p{E_n\p{k}} = m\p{\bigcap_{n\geq1} E_n\p{k}} = 0.

Thus, setting k=1k = 1, there exists n10n_1 \geq 0 such that m(En1(1))<ε2m\p{E_{n_1}\p{1}} < \frac{\epsilon}{2}. Suppose we have chosen n1<<nkn_1 < \cdots < n_k. Then there exists nk+1>nkn_{k+1} > n_k such that m(Enk+1)<ε2k+1m\p{E_{n_{k+1}}} < \frac{\epsilon}{2^{k+1}}, since m(En(k+1))0m\p{E_n\p{k+1}} \to 0 as nn \to \infty. By induction, there exists a strictly increasing sequence {nk}k\set{n_k}_k such that m(Enk(k))<ε2km\p{E_{n_k}\p{k}} < \frac{\epsilon}{2^k}. Thus, if we set E=k1Enk(k)E = \bigcup_{k\geq1} E_{n_k}\p{k}, then

m(E)k1m(Enk(k))<k1ε2k=ε.m\p{E} \leq \sum_{k\geq1} m\p{E_{n_k}\p{k}} < \sum_{k\geq1} \frac{\epsilon}{2^k} = \epsilon.

Moreover,

xEc=k1mnk{x|fm(x)f(x)<1k}    k1,mnk:fm(x)f(x)<1k.x \in E^c = \bigcap_{k\geq1} \bigcap_{m \geq n_k} \set{x \st \abs{f_m\p{x} - f\p{x}} < \frac{1}{k}} \iff \forall k \geq 1, \forall m \geq n_k : \abs{f_m\p{x} - f\p{x}} < \frac{1}{k}.

nkn_k only depends on kk, so in other words, fnf_n converges uniformly on EcE^\comp, as required.