Spring 2010 - Problem 3

Hardy-Littlewood maximal inequality

For an f ⁣:RR\func{f}{\R}{\R} belonging to L1(R)L^1\p{\R}, we define the Hardy-Littlewood maximal function as follows:

(Mf)(x)suph>012hxhx+hf(y)dy.\p{Mf}\p{x} \coloneqq \sup_{h>0}\,\frac{1}{2h} \int_{x-h}^{x+h} \abs{f\p{y}} \,\diff{y}.

Prove that it has the following property: There is a constant AA such that for any λ>0\lambda > 0,

{xR|(Mf)(x)>λ}AλfL1\abs{\set{x \in \R \st \p{Mf}\p{x} > \lambda}} \leq \frac{A}{\lambda} \norm{f}_{L^1}

where E\abs{E} denotes the Lebesgue measure of EE. If you use a covering lemma, you should prove it.

Solution.

We will first prove the following covering lemma: let C={B(xα,rα)}αI\mathcal{C} = \set{B\p{x_\alpha, r_\alpha}}_{\alpha \in I} be a collection of open balls in R\R with {rα}α\set{r_\alpha}_\alpha bounded, where II is some indexing set. Then there exists a pairwise disjoint subcollection DC\mathcal{D} \subseteq \mathcal{C} such that for any B(xα,rα)CB\p{x_\alpha, r_\alpha} \in \mathcal{C}, there exists B(xβ,rβ)DB\p{x_\beta, r_\beta} \in \mathcal{D} such that

B(xα,rα)5B(xβ,rβ)B(xβ,5rβ).B\p{x_\alpha, r_\alpha} \subseteq 5B\p{x_\beta, r_\beta} \coloneqq B\p{x_\beta, 5r_\beta}.

To prove it, let R=supαIrαR = \sup_{\alpha \in I} r_\alpha, which is finite by assumption. Partition C\mathcal{C} into {Cn}n\set{\mathcal{C}_n}_n, where Cn\mathcal{C}_n contains all balls B(xα,rα)CB\p{x_\alpha, r_\alpha} \in \mathcal{C} with radius rα(R2n+1,R2n]r_\alpha \in \poc{\frac{R}{2^{n+1}}, \frac{R}{2^n}}.

We pick Dn\mathcal{D}_n as follows: let U0=C0\mathcal{U}_0 = \mathcal{C}_0, and let D0\mathcal{D}_0 be a maximal disjoint subcollection of U0\mathcal{U}_0, which exists by, say, Zorn's lemma. Now suppose we have chosen D0,,Dn\mathcal{D}_0, \ldots, \mathcal{D}_n along with U0,,Un\mathcal{U}_0, \ldots, \mathcal{U}_n. Let

Un+1={BCn+1BC= for all CD0Dn},\mathcal{U}_{n+1} = \set{B \in \mathcal{C}_{n+1} \mid B \cap C = \emptyset \text{ for all } C \in \mathcal{D}_0 \cup \cdots \cup \mathcal{D}_n},

and let Dn+1\mathcal{D}_{n+1} be a maximal disjoint subcollection of Un+1\mathcal{U}_{n+1}. Set D=n=0Dn\mathcal{D} = \bigcup_{n=0}^\infty \mathcal{D}_n. We claim that this has the desired properties.

Let BCDB \neq C \in \mathcal{D}. Then there exist nBn_B and nCn_C such that BDnBB \in \mathcal{D}_{n_B} and CDnCC \in \mathcal{D}_{n_C}. If n0nB=nCn_0 \coloneqq n_B = n_C, then by construction, BC=B \cap C = \emptyset since Dn0\mathcal{D}_{n_0} was chosen to be a disjoint subcollection of Un0\mathcal{U}_{n_0}. Otherwise, suppose without loss of generality that nB<nCn_B < n_C. By construction, CUnCC \in \mathcal{U}_{n_C} which was chosen to be disjoint from any ball in D1DnC1DnBB\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{n_C-1} \supseteq \mathcal{D}_{n_B} \ni B, so BC=B \cap C = \emptyset, so D\mathcal{D} is a pairwise disjoint subcollection of C\mathcal{C}.

As for the intersection property, let B=B(xα,rα)CB = B\p{x_\alpha, r_\alpha} \in \mathcal{C}, so there exists nn such that BCnB \in \mathcal{C}_n, since we had a partition. If BUnB \in \mathcal{U}_n, then BB intersects a ball CDnC \in \mathcal{D}_n, since Dn\mathcal{D}_n was a maximal disjoint subcollection of Un\mathcal{U}_n. Otherwise, by definition of Un\mathcal{U}_n, there exists CD0Dn1C \in \mathcal{D}_0 \cup \cdots \cup \mathcal{D}_{n-1} such that BC=B \cap C = \emptyset. In either case, BB intersects some ball B(xβ,rβ)D0DnB\p{x_\beta, r_\beta} \in \mathcal{D}_0 \cup \cdots \cup \mathcal{D}_n, so there exists yB(xα,rα)B(xβ,rβ)y \in B\p{x_\alpha, r_\alpha} \cap B\p{x_\beta, r_\beta}. By construction, rβ>R2n+1r_\beta > \frac{R}{2^{n+1}} and rαR2nr_\alpha \leq \frac{R}{2^n}, so 2rβrα2r_\beta \geq r_\alpha. For any xB(xα,rα)x \in B\p{x_\alpha, r_\alpha}, the triangle inequality gives

xxβxxα+xαy+yxβ<rα+rα+rβ5rβ.\abs{x - x_\beta} \leq \abs{x - x_\alpha} + \abs{x_\alpha - y} + \abs{y - x_\beta} < r_\alpha + r_\alpha + r_\beta \leq 5r_\beta.

Thus, B(xα,rα)B(xβ,5rβ)B\p{x_\alpha, r_\alpha} \subseteq B\p{x_\beta, 5r_\beta}, as desired.

Notice that D\mathcal{D} is at most countable: by density of Q\Q, each BαDB_\alpha \in \mathcal{D} contains some qαQq_\alpha \in \Q. Since D\mathcal{D} is a pairwise disjoint collection, it follows that BαqαB_\alpha \mapsto q_\alpha is an injective map, so D\mathcal{D} injects into Q\Q, hence countable.

We now prove the Hardy-Littlewood maximal inequality. By definition, for any xE{(Mf)(x)>λ}x \in E \coloneqq \set{\p{Mf}\p{x} > \lambda}, there exists hx>0h_x > 0 such that

λ<12hxxhxx+hxf(y)dy12hxfL1    m(Ix)1λIxf(y)dy,(1)\tag{1} \lambda < \frac{1}{2h_x} \int_{x-h_x}^{x+h_x} \abs{f\p{y}} \,\diff{y} \leq \frac{1}{2h_x} \norm{f}_{L^1} \implies m\p{I_x} \leq \frac{1}{\lambda} \int_{I_x} \abs{f\p{y}} \,\diff{y},

where Ix=(xhx,x+hx)I_x = \p{x - h_x, x + h_x} and mm denotes the Lebesgue measure. By our covering lemma, there exists {xn}n\set{x_n}_n such that {Ixn}n\set{I_{x_n}}_n is a countable disjoint collection of intervals and such that for any xEx \in E, there exists xn0x_{n_0} with Ix5Ixn0I_x \subseteq 5I_{x_{n_0}}, which implies m(Ix)5m(Ixn0)m\p{I_x} \leq 5m\p{I_{x_{n_0}}}. Thus,

m(E)m(xEIx)m(n=15Ixn)=5m(n=1Ixn)=5n=1m(Ixn)(countable additivity of m)5n=11λIxnf(y)dy(by (1) above)=5λnIxnf(y)dy(the intervals are pairwise disjoint)5λfL1,\begin{aligned} m\p{E} \leq m\p{\bigcup_{x \in E} I_x} &\leq m\p{\bigcup_{n=1}^\infty 5I_{x_n}} \\ &= 5m\p{\bigcup_{n=1}^\infty I_{x_n}} \\ &= 5\sum_{n=1}^\infty m\p{I_{x_n}} && (\text{countable additivity of } m) \\ &\leq 5\sum_{n=1}^\infty \frac{1}{\lambda} \int_{I_{x_n}} \abs{f\p{y}} \,\diff{y} && (\text{by (1) above}) \\ &= \frac{5}{\lambda} \int_{\bigcup_n I_{x_n}} \abs{f\p{y}} \,\diff{y} && (\text{the intervals are pairwise disjoint}) \\ &\leq \frac{5}{\lambda} \norm{f}_{L^1}, \end{aligned}

which completes the proof.