We will first prove Young's convolution inequality: if p1+q1=r1+1, f∈Lp(R), g∈Lq(R), then ∥f∗g∥Lr≤∥f∥Lp∥g∥Lq.
Notice that because 1≤p,q≤∞, we have p1,q1≥1, and so p1,q1≥r1 from the condition on p,q,r. Thus,
1=p1+q1−r1=(p1−r1)+(q1−r1)+r1=prr−p+qrr−q+r1.
Since all the terms are non-negative and sum to 1, we see that prr−p,pqrr−q∈[0,1], so if we set p′1=prr−p and q′1=qrr−q, then p′1+q′1+r1=1. We have
1−p′p=1−rr−p=rp1−q′q=1−rr−q=rq.
Thus, by Hölder's inequality,
∣(f∗φ)(x)∣≤∫R∣f(x−y)φ(y)∣dy=∫R∣f(x−y)∣p/p′∣f(x−y)∣1−p/p′∣φ(y)∣q/q′∣φ(y)∣1−q/q′dy=∫R∣f(x−y)∣p/p′∣φ(y)∣q/q′(∣f(x−y)∣p/r∣φ(y)∣q/r)dy≤(∫R∣f(x−y)∣pdy)1/p′(∫R∣φ(y)∣qdy)1/q′(∫R∣f(x−y)∣p∣φ(y)∣qdy)1/r=∥f∥Lpp/p′∥φ∥Lqq/q′(∫R∣f(x−y)∣p∣φ(y)∣qdy)1/r.
Continuing,
∥f∗φ∥Lrr⟹∥f∗φ∥Lr≤∫R∥f∥Lppr/p′∥φ∥Lqqr/q′∫R∣f(x−y)∣p∣φ(y)∣qdydx=∥f∥Lpr−p∥φ∥Lqr−q∫R∣φ(y)∣q∫R∣f(x−y)∣pdxdy=∥f∥Lpr−p∥φ∥Lqr−q∥φ∥Lqq∥f∥Lpp=∥f∥Lpr∥φ∥Lqr≤∥f∥Lp∥φ∥Lq.(by Fubini-Tonelli)
To prove the inequality, observe that
1−p1+q1≥1⟹∃r∈[1,∞] such that 1−p1+q1=r1⟹p1+r1=q1+1.
Thus, because φ has compact support, φ∈Lr(R), so Young's convolution inequality gives
∥f∗φ∥Lq≤∥φ∥Lr∥f∥Lp.
Hence, A=∥φ∥Lr works, which completes the proof.
Let φ:R→R be defined as follows: φ(x)=0 for x∈/[1,2], φ(x)=1 for x∈[0,1], and linear on [−1,0] and [1,2].
Since p>q, there exists α>0 such that q<α1<p, and set f(x)=xα1 on [1,∞) and 0 otherwise. Observe that qα<1<pα, so f∈Lp(R), but f∈/Lq(R). Notice that for x≥1,
(f∗φ)(x)=∫Rf(x−y)φ(y)dy≥∫01f(x−y)dy=∫x−1xyα1dy≥xα1,
where the last inequality comes from the fact that f is a decreasing function. Thus, f∗φ∈/Lq(R), so the inequality cannot hold.