Spring 2010 - Problem 11

Young's inequality

Let φ ⁣:RR\func{\phi}{\R}{\R} be a continuous function with compact support.

  1. Prove that there is a constant AA such that

    fφLqAfLpfor all1pqand allfLp.\norm{f * \phi}_{L^q} \leq A\norm{f}_{L^p} \quad\text{for all}\quad 1 \leq p \leq q \leq \infty \quad\text{and all}\quad f \in L^p.

    If you use Young's (convolution) inequality, you should prove it.

  2. Show by example that such a general inequality cannot hold for p>qp > q.

Solution.
  1. We will first prove Young's convolution inequality: if 1p+1q=1r+1\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1, fLp(R)f \in L^p\p{\R}, gLq(R)g \in L^q\p{\R}, then fgLrfLpgLq\norm{f * g}_{L^r} \leq \norm{f}_{L^p} \norm{g}_{L^q}.

    Notice that because 1p,q1 \leq p, q \leq \infty, we have 1p,1q1\frac{1}{p}, \frac{1}{q} \geq 1, and so 1p,1q1r\frac{1}{p}, \frac{1}{q} \geq \frac{1}{r} from the condition on p,q,rp, q, r. Thus,

    1=1p+1q1r=(1p1r)+(1q1r)+1r=rppr+rqqr+1r.\begin{aligned} 1 &= \frac{1}{p} + \frac{1}{q} - \frac{1}{r} \\ &= \p{\frac{1}{p} - \frac{1}{r}} + \p{\frac{1}{q} - \frac{1}{r}} + \frac{1}{r} \\ &= \frac{r - p}{pr} + \frac{r - q}{qr} + \frac{1}{r}. \end{aligned}

    Since all the terms are non-negative and sum to 11, we see that rppr,rqpqr[0,1]\frac{r-p}{pr}, \frac{r-q}{pqr} \in \br{0, 1}, so if we set 1p=rppr\frac{1}{p'} = \frac{r-p}{pr} and 1q=rqqr\frac{1}{q'} = \frac{r-q}{qr}, then 1p+1q+1r=1\frac{1}{p'} + \frac{1}{q'} + \frac{1}{r} = 1. We have

    1pp=1rpr=pr1qq=1rqr=qr.\begin{gathered} 1 - \frac{p}{p'} = 1 - \frac{r - p}{r} = \frac{p}{r} \\ 1 - \frac{q}{q'} = 1 - \frac{r - q}{r} = \frac{q}{r}. \end{gathered}

    Thus, by Hölder's inequality,

    (fφ)(x)Rf(xy)φ(y)dy=Rf(xy)p/pf(xy)1p/pφ(y)q/qφ(y)1q/qdy=Rf(xy)p/pφ(y)q/q(f(xy)p/rφ(y)q/r)dy(Rf(xy)pdy)1/p(Rφ(y)qdy)1/q(Rf(xy)pφ(y)qdy)1/r=fLpp/pφLqq/q(Rf(xy)pφ(y)qdy)1/r.\begin{aligned} \abs{\p{f * \phi}\p{x}} &\leq \int_\R \abs{f\p{x - y}\phi\p{y}} \,\diff{y} \\ &= \int_\R \abs{f\p{x - y}}^{p/p'} \abs{f\p{x - y}}^{1-p/p'} \abs{\phi\p{y}}^{q/q'} \abs{\phi\p{y}}^{1-q/q'} \,\diff{y} \\ &= \int_\R \abs{f\p{x - y}}^{p/p'} \abs{\phi\p{y}}^{q/q'} \p{\abs{f\p{x - y}}^{p/r} \abs{\phi\p{y}}^{q/r}} \,\diff{y} \\ &\leq \p{\int_\R \abs{f\p{x - y}}^p \,\diff{y}}^{1/p'} \p{\int_\R \abs{\phi\p{y}}^q \,\diff{y}}^{1/q'} \p{\int_\R \abs{f\p{x - y}}^p \abs{\phi\p{y}}^q \,\diff{y}}^{1/r} \\ &= \norm{f}_{L^p}^{p/p'} \norm{\phi}_{L^q}^{q/q'} \p{\int_\R \abs{f\p{x - y}}^p \abs{\phi\p{y}}^q \,\diff{y}}^{1/r}. \end{aligned}

    Continuing,

    fφLrrRfLppr/pφLqqr/qRf(xy)pφ(y)qdydx=fLprpφLqrqRφ(y)qRf(xy)pdxdy(by Fubini-Tonelli)=fLprpφLqrqφLqqfLpp=fLprφLqr    fφLrfLpφLq.\begin{aligned} \norm{f * \phi}_{L^r}^r &\leq \int_\R \norm{f}_{L^p}^{pr/p'} \norm{\phi}_{L^q}^{qr/q'} \int_\R \abs{f\p{x - y}}^p \abs{\phi\p{y}}^q \,\diff{y} \,\diff{x} \\ &= \norm{f}_{L^p}^{r-p} \norm{\phi}_{L^q}^{r-q} \int_\R \abs{\phi\p{y}}^q \int_\R \abs{f\p{x - y}}^p \,\diff{x} \,\diff{y} && (\text{by Fubini-Tonelli}) \\ &= \norm{f}_{L^p}^{r-p} \norm{\phi}_{L^q}^{r-q} \norm{\phi}_{L^q}^q \norm{f}_{L^p}^p \\ &= \norm{f}_{L^p}^r \norm{\phi}_{L^q}^r \\ \implies \norm{f * \phi}_{L^r} &\leq \norm{f}_{L^p} \norm{\phi}_{L^q}. \end{aligned}

    To prove the inequality, observe that

    11p+1q1    r[1,] such that 11p+1q=1r    1p+1r=1q+1.1 - \frac{1}{p} + \frac{1}{q} \geq 1 \implies \exists r \in \br{1, \infty} \text{ such that } 1 - \frac{1}{p} + \frac{1}{q} = \frac{1}{r} \implies \frac{1}{p} + \frac{1}{r} = \frac{1}{q} + 1.

    Thus, because φ\phi has compact support, φLr(R)\phi \in L^r\p{\R}, so Young's convolution inequality gives

    fφLqφLrfLp.\norm{f * \phi}_{L^q} \leq \norm{\phi}_{L^r}\norm{f}_{L^p}.

    Hence, A=φLrA = \norm{\phi}_{L^r} works, which completes the proof.

  2. Let φ ⁣:RR\func{\phi}{\R}{\R} be defined as follows: φ(x)=0\phi\p{x} = 0 for x[1,2]x \notin \br{1, 2}, φ(x)=1\phi\p{x} = 1 for x[0,1]x \in \br{0, 1}, and linear on [1,0]\br{-1, 0} and [1,2]\br{1, 2}.

    Since p>qp > q, there exists α>0\alpha > 0 such that q<1α<pq < \frac{1}{\alpha} < p, and set f(x)=1xαf\p{x} = \frac{1}{x^\alpha} on [1,)\pco{1, \infty} and 00 otherwise. Observe that qα<1<pαq\alpha < 1 < p\alpha, so fLp(R)f \in L^p\p{\R}, but fLq(R)f \notin L^q\p{\R}. Notice that for x1x \geq 1,

    (fφ)(x)=Rf(xy)φ(y)dy01f(xy)dy=x1x1yαdy1xα,\begin{aligned} \p{f * \phi}\p{x} &= \int_\R f\p{x - y}\phi\p{y} \,\diff{y} \\ &\geq \int_0^1 f\p{x - y} \,\diff{y} \\ &= \int_{x-1}^x \frac{1}{y^\alpha} \,\diff{y} \\ &\geq \frac{1}{x^\alpha}, \end{aligned}

    where the last inequality comes from the fact that ff is a decreasing function. Thus, fφLq(R)f * \phi \notin L^q\p{\R}, so the inequality cannot hold.