Fall 2010 - Problem 9

Grunsky coefficients

Let

f(z)=n=0anznf\p{z} = \sum_{n=0}^\infty a_nz^n

be a holomorphic function in D\D. Show that if

n=2nana1\sum_{n=2}^\infty n\abs{a_n} \leq \abs{a_1}

with a10a_1 \neq 0 then ff is injective.

Solution.

Consider the function

g(z,w)=g(z)g(w)zwg\p{z, w} = \frac{g\p{z} - g\p{w}}{z - w}

for z,wDz, w \in \D. Since ff is analytic, we have the following expansion for gg:

g(z,w)=1zw(n=0anznn=0anwn)=a1+n=2(ank=0n1zn1kwk).\begin{aligned} g\p{z, w} &= \frac{1}{z - w} \p{\sum_{n=0}^\infty a_nz^n - \sum_{n=0}^\infty a_nw^n} \\ &= a_1 + \sum_{n=2}^\infty \p{a_n \sum_{k=0}^{n-1} z^{n-1-k}w^k}. \end{aligned}

Given zwz \neq w in D\D, let r=max{z,w}r = \max\,\set{\abs{z}, \abs{w}} so that z,wr<1\abs{z}, \abs{w} \leq r < 1. Applying this along with the triangle inequality yields

g(z,w)a1rn=2nana1(1r)>0,\begin{aligned} \abs{g\p{z, w}} \geq \abs{a_1} - r\sum_{n=2}^\infty n\abs{a_n} \geq \abs{a_1}\p{1 - r} > 0, \end{aligned}

since a10a_1 \neq 0. Thus, g(z,w)0g\p{z, w} \neq 0, and so f(z)f(w)f\p{z} \neq f\p{w} for any distinct z,wDz, w \in \D.