Fall 2010 - Problem 5

density argument

Let R/Z\R/\Z denote the torus (whose elements we will write as cosets) and fix an irrational number α>0\alpha > 0.

  1. Show that

    limN1Nn=0N1f(nα+Z)=01f(x+Z)dx\lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} f\p{n\alpha + \Z} = \int_0^1 f\p{x + \Z} \,\diff{x}

    for all continuous functions f ⁣:R/ZR\func{f}{\R/\Z}{\R}.

    Hint: Consider first f(x)=e2πikxf\p{x} = e^{2\pi ikx}.

  2. Show that the conclusion is also true when ff is the characteristic function of a closed interval.

Solution.
  1. For notation, define

    EN(f)=1Nn=0N1f(nα+Z).E_N\p{f} = \frac{1}{N} \sum_{n=0}^{N-1} f\p{n\alpha + \Z}.

    We follow the hint, and we first establish the conclusion for f(x)=e2πikxf\p{x} = e^{2\pi ikx}:

    1Nn=0N1e2πiknα=1Nn=0N1(e2πikα)n=1Ne2πikNα1e2πikα1,\begin{aligned} \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi ikn\alpha} &= \frac{1}{N} \sum_{n=0}^{N-1} \p{e^{2\pi ik\alpha}}^n \\ &= \frac{1}{N} \frac{e^{2\pi ikN\alpha} - 1}{e^{2\pi ik\alpha} - 1}, \end{aligned}

    which tends to 00 as NN \to \infty for any kZk \in \Z. Indeed, α\alpha is irrational, so the denominator is never 00. On the other hand,

    01e2πikxdx=0\int_0^1 e^{2\pi ikx} \,\diff{x} = 0

    since e2πikxe^{2\pi ikx} is 11-periodic. Thus, limNEN(e2πikx)=01e2πikxdx\lim_{N\to\infty} E_N\p{e^{2\pi ikx}} = \int_0^1 e^{2\pi ikx} \,\diff{x}. By linearity of integration, the equality is established for any trigonometric polynomial, i.e., any real linear combination of {e2πikxkZ}\set{e^{2\pi ikx} \mid k \in \Z}. Let AA denote the set of trigonometric polynomials.

    Notice that by definition, AA is a vector space over R\R, AA is closed under multiplication since e2πikxe2πix=e2πi(k+)xAe^{2\pi ikx} e^{2\pi i\ell x} = e^{2\pi i\p{k+\ell}x} \in A, and 1A1 \in A. Hence, AA is a subalgebra of C(R/Z)C\p{\R/\Z} which separates points, so by Stone-Weierstrass, AA is dense in C(R/Z)C\p{\R/\Z} with respect to the uniform norm.

    Let fC(R/Z)f \in C\p{\R/\Z} and ε>0\epsilon > 0. By density, we may pick gAg \in A such that fgL<ε\norm{f - g}_{L^\infty} < \epsilon. By our preliminary result, for NN large enough, we also have EN(g)01gdx<ε\abs{E_N\p{g} - \int_0^1 g \,\diff{x}} < \epsilon, so

    EN(f)01f(x+Z)dxEN(f)EN(g)+EN(g)01g(x+Z)dx+01g(x+Z)dx01f(x+Z)dx1Nn=0N1fgL+ε+01fgLdx=2fgL+ε3ε.\begin{aligned} \abs{E_N\p{f} - \int_0^1 f\p{x + \Z} \,\diff{x}} &\leq \abs{E_N\p{f} - E_N\p{g}} + \abs{E_N\p{g} - \int_0^1 g\p{x + \Z} \,\diff{x}} + \abs{\int_0^1 g\p{x + \Z} \,\diff{x} - \int_0^1 f\p{x + \Z} \,\diff{x}} \\ &\leq \frac{1}{N} \sum_{n=0}^{N-1} \norm{f - g}_{L^\infty} + \epsilon + \int_0^1 \norm{f - g}_{L^\infty} \,\diff{x} \\ &= 2\norm{f - g}_{L^\infty} + \epsilon \\ &\leq 3\epsilon. \end{aligned}

    Sending ε0\epsilon \to 0, we see

    limNn=0N1f(nα+Z)=01f(x+Z)dx,\lim_{N\to\infty} \sum_{n=0}^{N-1} f\p{n\alpha + \Z} = \int_0^1 f\p{x + \Z} \,\diff{x},

    which completes the proof.

  2. Let f=χ[a,b]f = \chi_{\br{a,b}}, and pick sequences of continuous functions gk,hkg_k, h_k which converge to ff almost everywhere and such that 0gkfhk10 \leq g_k \leq f \leq h_k \leq 1. For example, we can pick gkg_k to be

    • 00 outside of [a,b]\br{a, b} (possibly nowhere),
    • linear on [a,a+1k]\br{a, a + \frac{1}{k}},
    • 11 on [a+1k,b1k]\br{a + \frac{1}{k}, b - \frac{1}{k}},
    • linear on [b1k,b]\br{b - \frac{1}{k}, b}.

    Similarly, hkh_k can be

    • 00 outside of [a1k,b+1k]\br{a - \frac{1}{k}, b + \frac{1}{k}} (possibly nowhere),
    • linear on [a1k,a]\br{a - \frac{1}{k}, a},
    • 11 on [a,b]\br{a, b},
    • linear on [b,b+1k]\br{b, b + \frac{1}{k}}.

    By monotonicity and (1) applied to gk,hkg_k, h_k, we have

    EN(gk)EN(f)EN(hk)    01gk(x+Z)dxlim infNEN(f)lim supNEN(f)01hk(x+Z)dx.\begin{gathered} E_N\p{g_k} \leq E_N\p{f} \leq E_N\p{h_k} \\ \implies \int_0^1 g_k\p{x + \Z} \,\diff{x} \leq \liminf_{N\to\infty} E_N\p{f} \leq \limsup_{N\to\infty} E_N\p{f} \leq \int_0^1 h_k\p{x + \Z} \,\diff{x}. \end{gathered}

    Moreover, gkg_k and hkh_k are dominated by 1L1(R/Z)1 \in L^1\p{\R/\Z} and converge to ff almost everywhere, so by dominated convergence and the above inequality,

    01f(x+Z)dxlim infNEN(f)lim supNEN(f)01f(x+Z)dx.\int_0^1 f\p{x + \Z} \,\diff{x} \leq \liminf_{N\to\infty} E_N\p{f} \leq \limsup_{N\to\infty} E_N\p{f} \leq \int_0^1 f\p{x + \Z} \,\diff{x}.

    Thus, limNEN(f)=01f(x+Z)dx\lim_{N\to\infty} E_N\p{f} = \int_0^1 f\p{x + \Z} \,\diff{x}, as required.