Fall 2010 - Problem 1

construction, dominated convergence theorem, Fatou's lemma

For this problem, consider just Lebesgue measurable functions f ⁣:[0,1]R\func{f}{\br{0,1}}{\R} together with the Lebesgue measure.

  1. State Fatou's lemma (no proof required).
  2. State and prove the Dominated Convergence Theorem.
  3. Give an example where fn(x)0f_n\p{x} \to 0 a.e., but fn(x)dx1\int f_n\p{x} \,\diff{x} \to 1.
Solution.
  1. Let fn,f ⁣:[0,1]R\func{f_n, f}{\br{0,1}}{\R} be non-negative Lebesgue measurable functions for n1n \geq 1. Then

    [0,1]lim infnfndxlim infn[0,1]fndx.\int_{\br{0,1}} \liminf_{n\to\infty}\,f_n \,\diff{x} \leq \liminf_{n\to\infty}\,\int_{\br{0,1}} f_n \,\diff{x}.
  2. Let fn,f,g ⁣:[0,1]R\func{f_n, f, g}{\br{0,1}}{\R} be Lebesgue measurable functions such that gL1g \in L^1, fng\abs{f_n} \leq g for all n1n \geq 1, and fnff_n \to f a.e.. Then fnf10\norm{f_n - f}_1 \to 0.

    Notice that fnff_n \to f a.e. implies fg    2gfnf0\abs{f} \leq g \implies 2g - \abs{f_n - f} \geq 0 and fnf0\abs{f_n - f} \to 0 a.e., so by Fatou's lemma,

    [0,1]2gdx=[0,1]lim infn(2gfnf)dxlim infn[0,1]2gfnfdx=lim infn[0,1]2gdx+lim infn([0,1]fnfdx)=[0,1]2gdxlim supn[0,1]fnfdx.\begin{aligned} \int_{\br{0,1}} 2g \,\diff{x} &= \int_{\br{0,1}} \liminf_{n\to\infty}\,\,\p{2g - \abs{f_n - f}} \,\diff{x} \\ &\leq \liminf_{n\to\infty}\,\int_{\br{0,1}} 2g - \abs{f_n - f} \,\diff{x} \\ &= \liminf_{n\to\infty}\,\int_{\br{0,1}} 2g \,\diff{x} + \liminf_{n\to\infty}\,\p{-\int_{\br{0,1}} \abs{f_n - f} \,\diff{x}} \\ &= \int_{\br{0,1}} 2g \,\diff{x} - \limsup_{n\to\infty}\,\int_{\br{0,1}} \abs{f_n - f} \,\diff{x}. \end{aligned}

    Because gL1g \in L^1, [0,1]2gdx\int_{\br{0,1}} 2g \,\diff{x} is finite, and so we may rearrange to get

    lim supn[0,1]fnfdx0    limn[0,1]fnfdx=0.\limsup_{n\to\infty}\,\int_{\br{0,1}} \abs{f_n - f} \,\diff{x} \leq 0 \implies \lim_{n\to\infty} \int_{\br{0,1}} \abs{f_n - f} \,\diff{x} = 0.