Let fn,f,g:[0,1]→R be Lebesgue measurable functions such that g∈L1, ∣fn∣≤g for all n≥1, and fn→f a.e.. Then ∥fn−f∥1→0.
Notice that fn→f a.e. implies ∣f∣≤g⟹2g−∣fn−f∣≥0 and ∣fn−f∣→0 a.e., so by Fatou's lemma,
∫[0,1]2gdx=∫[0,1]n→∞liminf(2g−∣fn−f∣)dx≤n→∞liminf∫[0,1]2g−∣fn−f∣dx=n→∞liminf∫[0,1]2gdx+n→∞liminf(−∫[0,1]∣fn−f∣dx)=∫[0,1]2gdx−n→∞limsup∫[0,1]∣fn−f∣dx.
Because g∈L1, ∫[0,1]2gdx is finite, and so we may rearrange to get
n→∞limsup∫[0,1]∣fn−f∣dx≤0⟹n→∞lim∫[0,1]∣fn−f∣dx=0.