Let R > 0 R > 0 R > 0 with the property stated and consider h ( z ) = f ( R z ) h\p{z} = f\p{Rz} h ( z ) = f ( R z ) . Thus, ∣ h ( z ) ∣ > 0 \abs{h\p{z}} > 0 ∣ h ( z ) ∣ > 0 when ∣ z ∣ = 1 \abs{z} = 1 ∣ z ∣ = 1 and h h h has zeroes { a n R } n \set{\frac{a_n}{R}}_n { R a n } n . Consider the Blaschke product
φ a ( z ) = z − a 1 − a ‾ z \phi_a\p{z} = \frac{z - a}{1 - \conj{a}z} φ a ( z ) = 1 − a z z − a
for a ∈ B ( 0 , 1 ) a \in B\p{0, 1} a ∈ B ( 0 , 1 ) . Notice that if ∣ z ∣ = 1 \abs{z} = 1 ∣ z ∣ = 1 , then ∣ φ a ( z ) ∣ = 1 \abs{\phi_a\p{z}} = 1 ∣ φ a ( z ) ∣ = 1 . Next, consider
g ( z ) = ∏ ∣ a n ∣ < R φ a n / R ( z ) , g\p{z} = \prod_{\abs{a_n} < R} \phi_{a_n/R}\p{z}, g ( z ) = ∣ a n ∣ < R ∏ φ a n / R ( z ) ,
which is an analytic function on B ( 0 , 1 ) B\p{0, 1} B ( 0 , 1 ) with the same zeroes and with the same order as h h h . Since a n ≠ 0 a_n \neq 0 a n = 0 for any n ≥ 1 n \geq 1 n ≥ 1 , we see that g ( 0 ) ≠ 0 g\p{0} \neq 0 g ( 0 ) = 0 as well. Thus, h / g h/g h / g is holomorphic and non-zero on B ( 0 , 1 ) B\p{0, 1} B ( 0 , 1 ) .
When ∣ z ∣ = R \abs{z} = R ∣ z ∣ = R , f ( z ) ≠ 0 f\p{z} \neq 0 f ( z ) = 0 which implies that h ( z ) ≠ 0 h\p{z} \neq 0 h ( z ) = 0 on ∣ z ∣ = 1 \abs{z} = 1 ∣ z ∣ = 1 . h h h is holomorphic near the boundary and the Blaschke products are continuous up to the boundary, so we see that log ∣ h / g ∣ \log\abs{h/g} log ∣ h / g ∣ is a harmonic function on B ( 0 , 1 ) B\p{0, 1} B ( 0 , 1 ) and continuous up to the boundary, so we apply the mean value property:
1 2 π ∫ 0 2 π log ∣ h ( e i θ ) g ( e i θ ) ∣ d θ = log ∣ h ( 0 ) g ( 0 ) ∣ = log ∣ h ( 0 ) ∣ − ∑ ∣ a n ∣ < R log ∣ φ a n / R ( 0 ) ∣ = log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < R log R ∣ a n ∣ . \begin{aligned}
\frac{1}{2\pi} \int_0^{2\pi} \log\abs{\frac{h\p{e^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta
&= \log\abs{\frac{h\p{0}}{g\p{0}}} \\
&= \log\abs{h\p{0}} - \sum_{\abs{a_n} < R} \log\abs{\phi_{a_n/R}\p{0}} \\
&= \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{R}{\abs{a_n}}.
\end{aligned} 2 π 1 ∫ 0 2 π log ∣ ∣ g ( e i θ ) h ( e i θ ) ∣ ∣ d θ = log ∣ ∣ g ( 0 ) h ( 0 ) ∣ ∣ = log ∣ h ( 0 ) ∣ − ∣ a n ∣ < R ∑ log ∣ ∣ φ a n / R ( 0 ) ∣ ∣ = log ∣ f ( 0 ) ∣ + ∣ a n ∣ < R ∑ log ∣ a n ∣ R .
On the other hand, ∣ g ( e i θ ) ∣ = 1 \abs{g\p{e^{i\theta}}} = 1 ∣ ∣ g ( e i θ ) ∣ ∣ = 1 for all 0 ≤ θ ≤ 2 π 0 \leq \theta \leq 2\pi 0 ≤ θ ≤ 2 π , so
1 2 π ∫ 0 2 π log ∣ h ( e i θ ) g ( e i θ ) ∣ d θ = 1 2 π ∫ 0 2 π h ( e i θ ) d θ = 1 2 π ∫ 0 2 π f ( R e i θ ) d θ . \frac{1}{2\pi} \int_0^{2\pi} \log\abs{\frac{h\p{e^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta
= \frac{1}{2\pi} \int_0^{2\pi} h\p{e^{i\theta}} \,\diff\theta
= \frac{1}{2\pi} \int_0^{2\pi} f\p{Re^{i\theta}} \,\diff\theta. 2 π 1 ∫ 0 2 π log ∣ ∣ g ( e i θ ) h ( e i θ ) ∣ ∣ d θ = 2 π 1 ∫ 0 2 π h ( e i θ ) d θ = 2 π 1 ∫ 0 2 π f ( R e i θ ) d θ .
Combining these together, we obtain
1 2 π ∫ 0 2 π f ( R e i θ ) d θ = log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < R log R ∣ a n ∣ , \frac{1}{2\pi} \int_0^{2\pi} f\p{Re^{i\theta}} \,\diff\theta
= \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{R}{\abs{a_n}}, 2 π 1 ∫ 0 2 π f ( R e i θ ) d θ = log ∣ f ( 0 ) ∣ + ∣ a n ∣ < R ∑ log ∣ a n ∣ R ,
as required.
Let N ( R ) = { n ∣ ∣ a n ∣ < R } N\p{R} = \set{n \mid \abs{a_n} < R} N ( R ) = { n ∣ ∣ a n ∣ < R } , i.e., the number of zeroes of f f f on the disk B ( 0 , R ) B\p{0, R} B ( 0 , R ) . Then
1 2 π ∫ 0 2 π log ∣ f ( 2 R e i θ ) ∣ d θ = log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < 2 R log 2 R ∣ a n ∣ ≥ log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < R log 2 R ∣ a n ∣ ≥ log ∣ f ( 0 ) ∣ + N ( R ) log 2. \begin{aligned}
\frac{1}{2\pi} \int_0^{2\pi} \log\abs{f\p{2Re^{i\theta}}} \,\diff\theta
&= \log\abs{f\p{0}} + \sum_{\abs{a_n} < 2R} \log\frac{2R}{\abs{a_n}} \\
&\geq \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{2R}{\abs{a_n}} \\
&\geq \log\abs{f\p{0}} + N\p{R}\log{2}.
\end{aligned} 2 π 1 ∫ 0 2 π log ∣ ∣ f ( 2 R e i θ ) ∣ ∣ d θ = log ∣ f ( 0 ) ∣ + ∣ a n ∣ < 2 R ∑ log ∣ a n ∣ 2 R ≥ log ∣ f ( 0 ) ∣ + ∣ a n ∣ < R ∑ log ∣ a n ∣ 2 R ≥ log ∣ f ( 0 ) ∣ + N ( R ) log 2 .
On the other hand, by assumption on f f f ,
1 2 π ∫ 0 2 π log ∣ f ( 2 R e i θ ) ∣ d θ ≤ 1 2 π ∫ 0 2 π log ∣ C ∣ + ∣ 2 R ∣ λ d θ = log ∣ C ∣ + ( 2 R ) λ . \frac{1}{2\pi} \int_0^{2\pi} \log\abs{f\p{2Re^{i\theta}}} \,\diff\theta
\leq \frac{1}{2\pi} \int_0^{2\pi} \log\abs{C} + \abs{2R}^\lambda \,\diff\theta
= \log\abs{C} + \p{2R}^\lambda. 2 π 1 ∫ 0 2 π log ∣ ∣ f ( 2 R e i θ ) ∣ ∣ d θ ≤ 2 π 1 ∫ 0 2 π log ∣ C ∣ + ∣ 2 R ∣ λ d θ = log ∣ C ∣ + ( 2 R ) λ .
Thus, combining these, we obtain the estimate
N ( R ) ≤ ( 2 R ) λ + log ∣ C ∣ − log ∣ f ( 0 ) ∣ log 2 ≤ A ( 2 R ) λ N\p{R}
\leq \frac{\p{2R}^\lambda + \log\abs{C} - \log\abs{f\p{0}}}{\log{2}}
\leq A\p{2R}^\lambda N ( R ) ≤ log 2 ( 2 R ) λ + log ∣ C ∣ − log ∣ f ( 0 ) ∣ ≤ A ( 2 R ) λ
for A , R A, R A , R large enough. Let M M M be large enough so that the inequality holds for R ≥ 2 M − 1 R \geq 2^{M-1} R ≥ 2 M − 1 . Let ε > 0 \epsilon > 0 ε > 0 and observe that
∑ n 1 ∣ a n ∣ λ + ε = ∑ ∣ a n ∣ < 2 M − 1 1 ∣ a n ∣ λ + ε + ∑ ∣ a n ∣ ≥ 2 M − 1 1 ∣ a n ∣ λ + ε . \sum_n \frac{1}{\abs{a_n}^{\lambda+\epsilon}}
= \sum_{\abs{a_n} < 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} + \sum_{\abs{a_n} \geq 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}. n ∑ ∣ a n ∣ λ + ε 1 = ∣ a n ∣ < 2 M − 1 ∑ ∣ a n ∣ λ + ε 1 + ∣ a n ∣ ≥ 2 M − 1 ∑ ∣ a n ∣ λ + ε 1 .
Notice f f f can only have finitely many zeroes in B ( 0 , 2 M − 1 ) ‾ \cl{B\p{0, 2^{M-1}}} B ( 0 , 2 M − 1 ) , or else they accumulate and f f f is identically zero, which is impossible. Moreover, the zeroes avoid 0 0 0 , since f ( 0 ) ≠ 0 f\p{0} \neq 0 f ( 0 ) = 0 , so the first sum is finite and bounded. Hence, it remains to bound the other sum:
∑ ∣ a n ∣ ≥ 2 M − 1 1 ∣ a n ∣ λ + ε = ∑ r = M ∞ ∑ 2 r − 1 ≤ ∣ a n ∣ < 2 r 1 ∣ a n ∣ λ + ε = ∑ r = M ∞ ∑ 2 r − 1 ≤ ∣ a n ∣ < 2 r 1 2 ( r − 1 ) ( λ + ε ) = ∑ r = M ∞ N ( 2 r ) − N ( 2 r − 1 ) 2 ( r − 1 ) ( λ + ε ) ≤ ∑ r = M ∞ A ( 2 R ) λ 2 ( r − 1 ) ( λ + ε ) = A R λ 2 ∑ r = M ∞ 1 ( 2 ε ) r < ∞ . \begin{aligned}
\sum_{\abs{a_n} \geq 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}
&= \sum_{r=M}^\infty \sum_{2^{r-1} \leq \abs{a_n} < 2^r} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} \\
&= \sum_{r=M}^\infty \sum_{2^{r-1} \leq \abs{a_n} < 2^r} \frac{1}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\
&= \sum_{r=M}^\infty \frac{N\p{2^r} - N\p{2^{r-1}}}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\
&\leq \sum_{r=M}^\infty \frac{A\p{2R}^\lambda}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\
&= \frac{AR^\lambda}{2} \sum_{r=M}^\infty \frac{1}{\p{2^\epsilon}^r} \\
&< \infty.
\end{aligned} ∣ a n ∣ ≥ 2 M − 1 ∑ ∣ a n ∣ λ + ε 1 = r = M ∑ ∞ 2 r − 1 ≤ ∣ a n ∣ < 2 r ∑ ∣ a n ∣ λ + ε 1 = r = M ∑ ∞ 2 r − 1 ≤ ∣ a n ∣ < 2 r ∑ 2 ( r − 1 ) ( λ + ε ) 1 = r = M ∑ ∞ 2 ( r − 1 ) ( λ + ε ) N ( 2 r ) − N ( 2 r − 1 ) ≤ r = M ∑ ∞ 2 ( r − 1 ) ( λ + ε ) A ( 2 R ) λ = 2 A R λ r = M ∑ ∞ ( 2 ε ) r 1 < ∞.
Indeed, this is a geometric series with common ratio 2 − ε < 1 2^{-\epsilon} < 1 2 − ε < 1 , since ε > 0 \epsilon > 0 ε > 0 , which completes the proof.