Spring 2009 - Problem 9

Blaschke products, decomposition of scales, Jensen's formula

Let f(z)f\p{z} be an analytic function on the entire complex plane C\C and assume f(0)0f\p{0} \neq 0. Let {an}\set{a_n} be the zeros of ff, counted with their multiplicities.

  1. Let R>0R > 0 be such that f(z)>0\abs{f\p{z}} > 0 on z=R\abs{z} = R. Prove

    12π02πlogf(Reiθ)dθ=logf(0)+an<RlogRan.\frac{1}{2\pi} \int_0^{2\pi} \log\abs{f\p{Re^{i\theta}}} \,\diff\theta = \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{R}{\abs{a_n}}.
  2. Assume f(z)Cezλ\abs{f\p{z}} \leq Ce^{\abs{z}^\lambda} for positive constants CC and λ\lambda. Prove that

    n1anλ+ε<\sum_n \frac{1}{\abs{a_n}^{\lambda+\epsilon}} < \infty

    for all ε>0\epsilon > 0.

    Hint: Estimate {nan<R}\abs{\set{n \mid \abs{a_n} < R}} by using (1) for the circle of radius 2R2R.

Solution.
  1. Let R>0R > 0 with the property stated and consider h(z)=f(Rz)h\p{z} = f\p{Rz}. Thus, h(z)>0\abs{h\p{z}} > 0 when z=1\abs{z} = 1 and hh has zeroes {anR}n\set{\frac{a_n}{R}}_n. Consider the Blaschke product

    φa(z)=za1az\phi_a\p{z} = \frac{z - a}{1 - \conj{a}z}

    for aB(0,1)a \in B\p{0, 1}. Notice that if z=1\abs{z} = 1, then φa(z)=1\abs{\phi_a\p{z}} = 1. Next, consider

    g(z)=an<Rφan/R(z),g\p{z} = \prod_{\abs{a_n} < R} \phi_{a_n/R}\p{z},

    which is an analytic function on B(0,1)B\p{0, 1} with the same zeroes and with the same order as hh. Since an0a_n \neq 0 for any n1n \geq 1, we see that g(0)0g\p{0} \neq 0 as well. Thus, h/gh/g is holomorphic and non-zero on B(0,1)B\p{0, 1}.

    When z=R\abs{z} = R, f(z)0f\p{z} \neq 0 which implies that h(z)0h\p{z} \neq 0 on z=1\abs{z} = 1. hh is holomorphic near the boundary and the Blaschke products are continuous up to the boundary, so we see that logh/g\log\abs{h/g} is a harmonic function on B(0,1)B\p{0, 1} and continuous up to the boundary, so we apply the mean value property:

    12π02πlogh(eiθ)g(eiθ)dθ=logh(0)g(0)=logh(0)an<Rlogφan/R(0)=logf(0)+an<RlogRan.\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} \log\abs{\frac{h\p{e^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta &= \log\abs{\frac{h\p{0}}{g\p{0}}} \\ &= \log\abs{h\p{0}} - \sum_{\abs{a_n} < R} \log\abs{\phi_{a_n/R}\p{0}} \\ &= \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{R}{\abs{a_n}}. \end{aligned}

    On the other hand, g(eiθ)=1\abs{g\p{e^{i\theta}}} = 1 for all 0θ2π0 \leq \theta \leq 2\pi, so

    12π02πlogh(eiθ)g(eiθ)dθ=12π02πh(eiθ)dθ=12π02πf(Reiθ)dθ.\frac{1}{2\pi} \int_0^{2\pi} \log\abs{\frac{h\p{e^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta = \frac{1}{2\pi} \int_0^{2\pi} h\p{e^{i\theta}} \,\diff\theta = \frac{1}{2\pi} \int_0^{2\pi} f\p{Re^{i\theta}} \,\diff\theta.

    Combining these together, we obtain

    12π02πf(Reiθ)dθ=logf(0)+an<RlogRan,\frac{1}{2\pi} \int_0^{2\pi} f\p{Re^{i\theta}} \,\diff\theta = \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{R}{\abs{a_n}},

    as required.

  2. Let N(R)={nan<R}N\p{R} = \set{n \mid \abs{a_n} < R}, i.e., the number of zeroes of ff on the disk B(0,R)B\p{0, R}. Then

    12π02πlogf(2Reiθ)dθ=logf(0)+an<2Rlog2Ranlogf(0)+an<Rlog2Ranlogf(0)+N(R)log2.\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} \log\abs{f\p{2Re^{i\theta}}} \,\diff\theta &= \log\abs{f\p{0}} + \sum_{\abs{a_n} < 2R} \log\frac{2R}{\abs{a_n}} \\ &\geq \log\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\frac{2R}{\abs{a_n}} \\ &\geq \log\abs{f\p{0}} + N\p{R}\log{2}. \end{aligned}

    On the other hand, by assumption on ff,

    12π02πlogf(2Reiθ)dθ12π02πlogC+2Rλdθ=logC+(2R)λ.\frac{1}{2\pi} \int_0^{2\pi} \log\abs{f\p{2Re^{i\theta}}} \,\diff\theta \leq \frac{1}{2\pi} \int_0^{2\pi} \log\abs{C} + \abs{2R}^\lambda \,\diff\theta = \log\abs{C} + \p{2R}^\lambda.

    Thus, combining these, we obtain the estimate

    N(R)(2R)λ+logClogf(0)log2A(2R)λN\p{R} \leq \frac{\p{2R}^\lambda + \log\abs{C} - \log\abs{f\p{0}}}{\log{2}} \leq A\p{2R}^\lambda

    for A,RA, R large enough. Let MM be large enough so that the inequality holds for R2M1R \geq 2^{M-1}. Let ε>0\epsilon > 0 and observe that

    n1anλ+ε=an<2M11anλ+ε+an2M11anλ+ε.\sum_n \frac{1}{\abs{a_n}^{\lambda+\epsilon}} = \sum_{\abs{a_n} < 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} + \sum_{\abs{a_n} \geq 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}.

    Notice ff can only have finitely many zeroes in B(0,2M1)\cl{B\p{0, 2^{M-1}}}, or else they accumulate and ff is identically zero, which is impossible. Moreover, the zeroes avoid 00, since f(0)0f\p{0} \neq 0, so the first sum is finite and bounded. Hence, it remains to bound the other sum:

    an2M11anλ+ε=r=M2r1an<2r1anλ+ε=r=M2r1an<2r12(r1)(λ+ε)=r=MN(2r)N(2r1)2(r1)(λ+ε)r=MA(2R)λ2(r1)(λ+ε)=ARλ2r=M1(2ε)r<.\begin{aligned} \sum_{\abs{a_n} \geq 2^{M-1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} &= \sum_{r=M}^\infty \sum_{2^{r-1} \leq \abs{a_n} < 2^r} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} \\ &= \sum_{r=M}^\infty \sum_{2^{r-1} \leq \abs{a_n} < 2^r} \frac{1}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\ &= \sum_{r=M}^\infty \frac{N\p{2^r} - N\p{2^{r-1}}}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\ &\leq \sum_{r=M}^\infty \frac{A\p{2R}^\lambda}{2^{\p{r-1}\p{\lambda+\epsilon}}} \\ &= \frac{AR^\lambda}{2} \sum_{r=M}^\infty \frac{1}{\p{2^\epsilon}^r} \\ &< \infty. \end{aligned}

    Indeed, this is a geometric series with common ratio 2ε<12^{-\epsilon} < 1, since ε>0\epsilon > 0, which completes the proof.