Spring 2009 - Problem 4

Fatou's lemma, monotone functions

Let f(x)f\p{x} be a non-decreasing function on [0,1]\br{0, 1}. You may assume that ff is differentiable almost everywhere.

  1. Prove that 01f(x)dxf(1)f(0)\int_0^1 f'\p{x} \,\diff{x} \leq f\p{1} - f\p{0}.

    Hint: Fatou.

  2. Let {fn}\set{f_n} be a sequence of non-decreasing functions on the unit interval [0,1]\br{0, 1}, such that the series F(x)=n=1fn(x)F\p{x} = \sum_{n=1}^\infty f_n\p{x} converges for all x[0,1]x \in \br{0, 1}. Prove that F(x)=n=1fn(x)F'\p{x} = \sum_{n=1}^\infty f_n'\p{x} almost everywhere on [0,1]\br{0, 1}.

    Hint: Let rn(x)=knfk(x)r_n\p{x} = \sum_{k \geq n} f_k\p{x}. It is enough to show rn(x)0r_n'\p{x} \to 0 a.e. Take a subsequence rnjr_{n_j} such that rnj(1)rnj(0)0r_{n_j}\p{1} - r_{n_j}\p{0} \to 0 and use part (a).

Solution.
  1. For convenience, we extend ff to f(x)=f(1)f\p{x} = f\p{1} for x1x \geq 1. By assumption,

    f(x)=lim infh0f(x+h)f(x)hf'\p{x} = \liminf_{h\to0}\,\frac{f\p{x\,+ h} - f\p{x}}{h}

    for almost every xx. Hence, by Fatou's lemma and a translation change of variables,

    01f(x)dxlim infh001f(x+h)f(x)hdx=lim infh01h(01f(x+h)dx01f(x)dx)=lim infh01h(h1+hf(x)dx01f(x)dx)=lim infh01h(11+hf(x)dx+h1f(x)dx01f(x)dx)=lim infh01h(11+hf(x)dx0hf(x)dx)lim infh01h(hf(1+h)hf(0))=lim infh01h(hf(1)hf(0))=f(1)f(0),\begin{aligned} \int_0^1 f'\p{x} \,\diff{x} &\leq \liminf_{h\to0}\,\int_0^1 \frac{f\p{x + h} - f\p{x}}{h} \,\diff{x} \\ &= \liminf_{h\to0}\,\frac{1}{h} \p{\int_0^1 f\p{x + h} \,\diff{x} - \int_0^1 f\p{x} \,\diff{x}} \\ &= \liminf_{h\to0}\,\frac{1}{h} \p{\int_h^{1+h} f\p{x} \,\diff{x} - \int_0^1 f\p{x} \,\diff{x}} \\ &= \liminf_{h\to0}\,\frac{1}{h} \p{\int_1^{1+h} f\p{x} \,\diff{x} + \int_h^1 f\p{x} \,\diff{x} - \int_0^1 f\p{x} \,\diff{x}} \\ &= \liminf_{h\to0}\,\frac{1}{h} \p{\int_1^{1+h} f\p{x} \,\diff{x} - \int_0^h f\p{x} \,\diff{x}} \\ &\leq \liminf_{h\to0}\,\frac{1}{h} \p{hf\p{1 + h} - hf\p{0}} \\ &= \liminf_{h\to0}\,\frac{1}{h} \p{hf\p{1} - hf\p{0}} \\ &= f\p{1} - f\p{0}, \end{aligned}

    as required.

  2. Notice that because all the fnf_n are non-decreasing, it follows that FF is non-decreasing as well. Thus, FF is differentiable almost everywhere. Similarly, rnr_n is differentiable almost everywhere as well, for all n1n \geq 1.

    By assumption, FF converges everywhere so rn(x)0r_n\p{x} \to 0 for all x[0,1]x \in \br{0, 1}. We also have

    F(x)=k=1nfk(x)+rn(x)    F(x)=k=1nfk(x)+rn(x)\begin{aligned} F\p{x} &= \sum_{k=1}^n f_k\p{x} + r_n\p{x} \\ \implies F'\p{x} &= \sum_{k=1}^n f_k'\p{x} + r_n'\p{x} \end{aligned}

    almost everywhere since all three functions are differentiable almost everywhere. Thus, for almost every x[0,1]x \in \br{0, 1},

    rn(x)rn+1(x)=fn(x)0,r_n'\p{x} - r_{n+1}'\p{x} = f_n'\p{x} \geq 0,

    since fnf_n is non-decreasing. In other words, {rn(x)}n\set{r_n'\p{x}}_n and because each fnf_n is non-decreasing,

    k=nmfn(x)0 m    rn(x)0,\sum_{k=n}^m f_n'\p{x} \geq 0\ \forall m \implies r_n'\p{x} \geq 0,

    so rn(x)r_n'\p{x} is a monotone decreasing sequence bounded below. Thus, rnr_n' converges almost everywhere, so we may apply the monotone convergence theorem. Combined with (1), we have

    01limnrn(x)dx=limn01rn(x)dxlimn(rn(1)rn(0))=0.\int_0^1 \lim_{n\to\infty} r_n'\p{x} \,\diff{x} = \lim_{n\to\infty} \int_0^1 r_n'\p{x} \,\diff{x} \leq \lim_{n\to\infty} \p{r_n\p{1} - r_n\p{0}} = 0.

    Since rn0r_n' \geq 0, it follows that limnrn(x)=0\lim_{n\to\infty} r_n'\p{x} = 0 almost everywhere and so

    F(x)=k=1nfk(x)+rn(x)nk=1fk(x),F'\p{x} = \sum_{k=1}^n f_k'\p{x} + r_n'\p{x} \xrightarrow{n\to\infty} \sum_{k=1}^\infty f_k'\p{x},

    as required.