Spring 2009 - Problem 1

Fubini's theorem

Let ff and gg be real-valued integrable functions on a measure space (X,B,μ)\p{X, \mathcal{B}, \mu}, and define

Ft={xXf(x)>t}, Gt={xXg(x)>t}.F_t = \set{x \in X \mid f\p{x} > t},\ G_t = \set{x \in X \mid g\p{x} > t}.

Prove

fgdμ=μ((FtGt)(GtFt))dt.\int \abs{f - g} \,\diff\mu = \int_{-\infty}^\infty \mu\p{\p{F_t \setminus G_t} \cup \p{G_t \setminus F_t}} \,\diff{t}.
Solution.

First, notice that FtGtF_t \setminus G_t and GtFtG_t \setminus F_t are disjoint, so

χ(FtGt)(GtFt)=χFtGt+χGtFt.\chi_{\p{F_t \setminus G_t} \cup \p{G_t \setminus F_t}} = \chi_{F_t \setminus G_t} + \chi_{G_t \setminus F_t}.

Because ff and gg are measurable, the sets

A={fg0}andAn={fg1n}A = \set{\abs{f - g} \neq 0} \quad\text{and}\quad A_n = \set{\abs{f - g} \geq \frac{1}{n}}

are measurable. Moreover, because ff and gg are integrable,

μ(An)nAnfgdμXfgdμ<.\frac{\mu\p{A_n}}{n} \leq \int_{A_n} \abs{f - g} \,\diff\mu \leq \int_X \abs{f - g} \,\diff\mu < \infty.

Combining this with the fact that A=n=1AnA = \bigcup_{n=1}^\infty A_n, we see that AA is a σ\sigma-finite set with respect to μ\mu. Hence, we may apply Fubini-Tonelli on R×A\R \times A.

Notice that on xAcx \in A^\comp, then f(x)=g(x)f\p{x} = g\p{x}, and so

FtAc=GtAc    (FtGt)Ac=(GtFt)Ac=.F_t \cap A^\comp = G_t \cap A^\comp \implies \p{F_t \setminus G_t} \cap A^\comp = \p{G_t \setminus F_t} \cap A^\comp = \emptyset.

In other words, FtGtAF_t \setminus G_t \subseteq A and GtFtAG_t \setminus F_t \subseteq A, and so by Fubini-Tonelli,

μ((FtGt)(GtFt))dt=XχFtGt+χGtFtdμdt=AχFtGt+χGtFtdμdt=AχFtGt+χGtFtdtdμ=Aχ{g(x)t<f(x)}+χ{f(x)t<g(x)}dtdμ=Ag(x)f(x)χ{g(x)<f(x)}dt+f(x)g(x)χ{f(x)<g(x)}dtdμ=A(f(x)g(x))χ{g(x)<f(x)}+(g(x)f(x))χ{f(x)<g(x)}dμ=Afgdμ=Xfgdμ,\begin{aligned} \int_{-\infty}^\infty \mu\p{\p{F_t \setminus G_t} \cup \p{G_t \setminus F_t}} \,\diff{t} &= \int_{-\infty}^\infty \int_X \chi_{F_t \setminus G_t} + \chi_{G_t \setminus F_t} \,\diff\mu \,\diff{t} \\ &= \int_{-\infty}^\infty \int_A \chi_{F_t \setminus G_t} + \chi_{G_t \setminus F_t} \,\diff\mu \,\diff{t} \\ &= \int_A \int_{-\infty}^\infty \chi_{F_t \setminus G_t} + \chi_{G_t \setminus F_t} \,\diff{t} \,\diff\mu \\ &= \int_A \int_{-\infty}^\infty \chi_{\set{g\p{x} \leq t < f\p{x}}} + \chi_{\set{f\p{x} \leq t < g\p{x}}} \,\diff{t} \,\diff\mu \\ &= \int_A \int_{g\p{x}}^{f\p{x}} \chi_{\set{g\p{x} < f\p{x}}} \,\diff{t} + \int_{f\p{x}}^{g\p{x}} \chi_{\set{f\p{x} < g\p{x}}} \,\diff{t} \,\diff\mu \\ &= \int_A \p{f\p{x} - g\p{x}}\chi_{\set{g\p{x} < f\p{x}}} + \p{g\p{x} - f\p{x}} \chi_{\set{f\p{x} < g\p{x}}} \,\diff\mu \\ &= \int_A \abs{f - g} \,\diff\mu \\ &= \int_X \abs{f - g} \,\diff\mu, \end{aligned}

since Acfgdμ=0\int_{A^\comp} \abs{f - g} \,\diff\mu = 0.