Fall 2009 - Problem 7

Hilbert spaces, operator theory, spectral theory
  1. Define unitary operator on a complex Hilbert space.

  2. Let SS be a unitary operator on a complex Hilbert space. Using your definition, prove that for every complex number λ<1\abs{\lambda} < 1, the operator SλIS - \lambda I is invertible. Here II denotes the identity operator.

  3. For a fixed vector vv in the Hilbert space and all {λC|λ<1}\set{\lambda \in \C \st \abs{\lambda} < 1}, we define

    h(λ)=(S+λI)(SλI)1v,vh\p{\lambda} = \inner{\p{S + \lambda I}\p{S - \lambda I}^{-1}v, v}

    Show that Re(h)\Re\p{h} is a positive harmonic function. (You may not invoke the spectral theorem.)

Solution.
  1. A linear operator S ⁣:HH\func{S}{H}{H} is unitary if it is bounded and satisfies SS=SS=IS^*S = SS^* = I, where SS^* is the adjoint of UU.

  2. Since SS is invertible, we have SλI=S(IλS1)S - \lambda I = S\p{I - \lambda S^{-1}}. Since SS is unitary, it has operator norm S=S=1\norm{S} = \norm{S^*} = 1 and so λS1λ<1\norm{\lambda S^{-1}} \leq \abs{\lambda} < 1. We claim that IλS1I - \lambda S^{-1} is invertible with

    (IλS1)1=n=0(λS1)n=n=0λnSn,\p{I - \lambda S^{-1}}^{-1} = \sum_{n=0}^\infty \p{\lambda S^{-1}}^n = \sum_{n=0}^\infty \lambda^n S^{-n},

    where Sn=S1S1S1S^{-n} = S^{-1} \circ S^{-1} \circ \cdots \circ S^{-1}, nn times. Indeed, we have

    (IλS1)(I+λS1++λnSn)=Iλn+1S(n+1).\p{I - \lambda S^{-1}}\p{I + \lambda S^{-1} + \cdots + \lambda^n S^{-n}} = I - \lambda^{n+1}S^{-\p{n+1}}.

    Notice that in the operator norm,

    n=NMλnSnn=NMλnSn=n=NMλn=λN1λMN,M0,\norm{\sum_{n=N}^M \lambda^n S^{-n}} \leq \sum_{n=N}^M \abs{\lambda}^n\norm{S^{-n}} = \sum_{n=N}^M \abs{\lambda}^n = \frac{\abs{\lambda}^N}{1 - \abs{\lambda}^M} \xrightarrow{N,M\to\infty} 0,

    so these operators are Cauchy in the operator norm. Since HH is complete, it follows that the bounded linear operators HHH \to H are also complete with respect to the operator norm, so the series converges to a bounded linear operator n=0λnSn\sum_{n=0}^\infty \lambda^n S^{-n}.

    Finally, λnSnλnn0\norm{\lambda^n S^{-n}} \leq \abs{\lambda}^n \xrightarrow{n\to\infty} 0, so taking nn \to \infty in the equality above,

    (IλS1)n=0λnSn=I.\p{I - \lambda S^{-1}} \sum_{n=0}^\infty \lambda^n S^{-n} = I.

    By repeating the same argument but commuting the terms, we see that

    (IλS1)1=n=0λnSn.\p{I - \lambda S^{-1}}^{-1} = \sum_{n=0}^\infty \lambda^n S^{-n}.

    Thus, SλIS - \lambda I is invertible with inverse

    (SλI)1=(IλS1)1S1=n=0λnSn1.\p{S - \lambda I}^{-1} = \p{I - \lambda S^{-1}}^{-1}S^{-1} = \sum_{n=0}^\infty \lambda^n S^{-n-1}.
  3. Since inner products are continuous, we may write for λ<1\abs{\lambda} < 1

    h(λ)=(S+λI)n=0λnSn1v,v=n=0λnSnv+λSn1v,v=n=0λnSnv,v+n=0λn+1Sn1v,v=v,v+n=12Snv,vλn=v2+n=12Snv,vλn.\begin{aligned} h\p{\lambda} &= \inner{\p{S + \lambda I}\sum_{n=0}^\infty \lambda^n S^{-n-1}v, v} \\ &= \sum_{n=0}^\infty \lambda^n \inner{S^{-n}v + \lambda S^{-n-1}v, v} \\ &= \sum_{n=0}^\infty \lambda^n \inner{S^{-n}v, v} + \sum_{n=0}^\infty \lambda^{n+1}\inner{S^{-n-1}v, v} \\ &= \inner{v, v} + \sum_{n=1}^\infty 2\inner{S^{-n}v, v}\lambda^n \\ &= \norm{v}^2 + \sum_{n=1}^\infty 2\inner{S^{-n}v, v}\lambda^n. \end{aligned}

    so h(λ)h\p{\lambda} is analytic on the unit disc, which means that Re(h)\Re\p{h} is harmonic. It remains to show that Re(h(λ))\Re\p{h\p{\lambda}} is positive. Observe that because S=S1S^* = S^{-1},

    h(λ)=(S+λI)(SλI)1v,v=v,(S+λI)(SλI)1v=(S1+λI)(S1λI)1v,v.\begin{aligned} \overline{h\p{\lambda}} &= \overline{\inner{\p{S + \lambda I}\p{S - \lambda I}^{-1}v, v}} \\ &= \inner{v, \p{S + \lambda I}\p{S - \lambda I}^{-1}v} \\ &= \inner{\p{S^{-1} + \conj{\lambda} I}\p{S^{-1} - \conj{\lambda} I}^{-1}v, v}. \end{aligned}

    Thus, if we set A(λ)=(S+λI)(SλI)1+(S1+λI)(S1λI)1A\p{\lambda} = \p{S + \lambda I}\p{S - \lambda I}^{-1} + \p{S^{-1} + \conj{\lambda} I}\p{S^{-1} - \conj{\lambda} I}^{-1} and note that everything commutes, we can factor to get

    A(λ)=(SλI)1[(S+λI)(S1λI)+(S1+λI)(SλI)](S1λI)1=(SλI)1(I+λS1λSλ2+IλS1+λSλ2)(S1λI)1=(SλI)1(2I2λ2)(S1λI)1.\begin{aligned} A\p{\lambda} &= \p{S - \lambda I}^{-1} \br{\p{S + \lambda I}\p{S^{-1} - \conj{\lambda} I} + \p{S^{-1} + \conj{\lambda}I}\p{S - \lambda I}} \p{S^{-1} - \conj{\lambda}I}^{-1} \\ &= \p{S - \lambda I}^{-1} \p{I + \lambda S^{-1} - \conj{\lambda}S - \abs{\lambda}^2 + I - \lambda S^{-1} + \conj{\lambda}S - \abs{\lambda}^2} \p{S^{-1} - \conj{\lambda}I}^{-1} \\ &= \p{S - \lambda I}^{-1} \p{2I - 2\abs{\lambda}^2} \p{S^{-1} - \conj{\lambda}I}^{-1}. \end{aligned}

    Thus, we get

    Re(h(λ))=A(λ)v,v2=(SλI)1(2I2λ2)(S1λI)1v,v2=(SλI)1(Iλ2)(S1λI)1v,v=(1λ2)(S1λI)1v,(S1λI)1v=(1λ2)(S1λI)1v2,\begin{aligned} \Re\p{h\p{\lambda}} &= \frac{\inner{A\p{\lambda}v, v}}{2} \\ &= \frac{\inner{\p{S - \lambda I}^{-1}\p{2I - 2\abs{\lambda}^2}\p{S^{-1} - \conj{\lambda}I}^{-1}v, v}}{2} \\ &= \inner{\p{S - \lambda I}^{-1}\p{I - \abs{\lambda}^2}\p{S^{-1} - \conj{\lambda}I}^{-1}v, v} \\ &= \p{1 - \abs{\lambda}^2}\inner{\p{S^{-1} - \conj{\lambda}I}^{-1}v, \p{S^{-1} - \conj{\lambda}I}^{-1}v} \\ &= \p{1 - \abs{\lambda}^2}\norm{\p{S^{-1} - \conj{\lambda}I}^{-1}v}^2, \end{aligned}

    which is strictly larger than 00 as long as v0v \neq 0. Indeed, λ<1\abs{\lambda} < 1, and (S1λ)1\p{S^{-1} - \conj{\lambda}}^{-1} is invertible; in particular, (S1λI)1v0\p{S^{-1} - \conj{\lambda}I}^{-1}v \neq 0.