Since S S S is invertible, we have S − λ I = S ( I − λ S − 1 ) S - \lambda I = S\p{I - \lambda S^{-1}} S − λ I = S ( I − λ S − 1 ) . Since S S S is unitary, it has operator norm ∥ S ∥ = ∥ S ∗ ∥ = 1 \norm{S} = \norm{S^*} = 1 ∥ S ∥ = ∥ S ∗ ∥ = 1 and so ∥ λ S − 1 ∥ ≤ ∣ λ ∣ < 1 \norm{\lambda S^{-1}} \leq \abs{\lambda} < 1 ∥ ∥ λ S − 1 ∥ ∥ ≤ ∣ λ ∣ < 1 . We claim that I − λ S − 1 I - \lambda S^{-1} I − λ S − 1 is invertible with
( I − λ S − 1 ) − 1 = ∑ n = 0 ∞ ( λ S − 1 ) n = ∑ n = 0 ∞ λ n S − n , \p{I - \lambda S^{-1}}^{-1}
= \sum_{n=0}^\infty \p{\lambda S^{-1}}^n = \sum_{n=0}^\infty \lambda^n S^{-n}, ( I − λ S − 1 ) − 1 = n = 0 ∑ ∞ ( λ S − 1 ) n = n = 0 ∑ ∞ λ n S − n ,
where S − n = S − 1 ∘ S − 1 ∘ ⋯ ∘ S − 1 S^{-n} = S^{-1} \circ S^{-1} \circ \cdots \circ S^{-1} S − n = S − 1 ∘ S − 1 ∘ ⋯ ∘ S − 1 , n n n times. Indeed, we have
( I − λ S − 1 ) ( I + λ S − 1 + ⋯ + λ n S − n ) = I − λ n + 1 S − ( n + 1 ) . \p{I - \lambda S^{-1}}\p{I + \lambda S^{-1} + \cdots + \lambda^n S^{-n}} = I - \lambda^{n+1}S^{-\p{n+1}}. ( I − λ S − 1 ) ( I + λ S − 1 + ⋯ + λ n S − n ) = I − λ n + 1 S − ( n + 1 ) .
Notice that in the operator norm,
∥ ∑ n = N M λ n S − n ∥ ≤ ∑ n = N M ∣ λ ∣ n ∥ S − n ∥ = ∑ n = N M ∣ λ ∣ n = ∣ λ ∣ N 1 − ∣ λ ∣ M → N , M → ∞ 0 , \norm{\sum_{n=N}^M \lambda^n S^{-n}}
\leq \sum_{n=N}^M \abs{\lambda}^n\norm{S^{-n}}
= \sum_{n=N}^M \abs{\lambda}^n
= \frac{\abs{\lambda}^N}{1 - \abs{\lambda}^M} \xrightarrow{N,M\to\infty} 0, ∥ ∥ n = N ∑ M λ n S − n ∥ ∥ ≤ n = N ∑ M ∣ λ ∣ n ∥ ∥ S − n ∥ ∥ = n = N ∑ M ∣ λ ∣ n = 1 − ∣ λ ∣ M ∣ λ ∣ N N , M → ∞ 0 ,
so these operators are Cauchy in the operator norm. Since H H H is complete, it follows that the bounded linear operators H → H H \to H H → H are also complete with respect to the operator norm, so the series converges to a bounded linear operator ∑ n = 0 ∞ λ n S − n \sum_{n=0}^\infty \lambda^n S^{-n} ∑ n = 0 ∞ λ n S − n .
Finally, ∥ λ n S − n ∥ ≤ ∣ λ ∣ n → n → ∞ 0 \norm{\lambda^n S^{-n}} \leq \abs{\lambda}^n \xrightarrow{n\to\infty} 0 ∥ λ n S − n ∥ ≤ ∣ λ ∣ n n → ∞ 0 , so taking n → ∞ n \to \infty n → ∞ in the equality above,
( I − λ S − 1 ) ∑ n = 0 ∞ λ n S − n = I . \p{I - \lambda S^{-1}} \sum_{n=0}^\infty \lambda^n S^{-n} = I. ( I − λ S − 1 ) n = 0 ∑ ∞ λ n S − n = I .
By repeating the same argument but commuting the terms, we see that
( I − λ S − 1 ) − 1 = ∑ n = 0 ∞ λ n S − n . \p{I - \lambda S^{-1}}^{-1} = \sum_{n=0}^\infty \lambda^n S^{-n}. ( I − λ S − 1 ) − 1 = n = 0 ∑ ∞ λ n S − n .
Thus, S − λ I S - \lambda I S − λ I is invertible with inverse
( S − λ I ) − 1 = ( I − λ S − 1 ) − 1 S − 1 = ∑ n = 0 ∞ λ n S − n − 1 . \p{S - \lambda I}^{-1}
= \p{I - \lambda S^{-1}}^{-1}S^{-1}
= \sum_{n=0}^\infty \lambda^n S^{-n-1}. ( S − λ I ) − 1 = ( I − λ S − 1 ) − 1 S − 1 = n = 0 ∑ ∞ λ n S − n − 1 .
Since inner products are continuous, we may write for ∣ λ ∣ < 1 \abs{\lambda} < 1 ∣ λ ∣ < 1
h ( λ ) = ⟨ ( S + λ I ) ∑ n = 0 ∞ λ n S − n − 1 v , v ⟩ = ∑ n = 0 ∞ λ n ⟨ S − n v + λ S − n − 1 v , v ⟩ = ∑ n = 0 ∞ λ n ⟨ S − n v , v ⟩ + ∑ n = 0 ∞ λ n + 1 ⟨ S − n − 1 v , v ⟩ = ⟨ v , v ⟩ + ∑ n = 1 ∞ 2 ⟨ S − n v , v ⟩ λ n = ∥ v ∥ 2 + ∑ n = 1 ∞ 2 ⟨ S − n v , v ⟩ λ n . \begin{aligned}
h\p{\lambda}
&= \inner{\p{S + \lambda I}\sum_{n=0}^\infty \lambda^n S^{-n-1}v, v} \\
&= \sum_{n=0}^\infty \lambda^n \inner{S^{-n}v + \lambda S^{-n-1}v, v} \\
&= \sum_{n=0}^\infty \lambda^n \inner{S^{-n}v, v} + \sum_{n=0}^\infty \lambda^{n+1}\inner{S^{-n-1}v, v} \\
&= \inner{v, v} + \sum_{n=1}^\infty 2\inner{S^{-n}v, v}\lambda^n \\
&= \norm{v}^2 + \sum_{n=1}^\infty 2\inner{S^{-n}v, v}\lambda^n.
\end{aligned} h ( λ ) = ⟨ ( S + λ I ) n = 0 ∑ ∞ λ n S − n − 1 v , v ⟩ = n = 0 ∑ ∞ λ n ⟨ S − n v + λ S − n − 1 v , v ⟩ = n = 0 ∑ ∞ λ n ⟨ S − n v , v ⟩ + n = 0 ∑ ∞ λ n + 1 ⟨ S − n − 1 v , v ⟩ = ⟨ v , v ⟩ + n = 1 ∑ ∞ 2 ⟨ S − n v , v ⟩ λ n = ∥ v ∥ 2 + n = 1 ∑ ∞ 2 ⟨ S − n v , v ⟩ λ n .
so h ( λ ) h\p{\lambda} h ( λ ) is analytic on the unit disc, which means that Re ( h ) \Re\p{h} Re ( h ) is harmonic. It remains to show that Re ( h ( λ ) ) \Re\p{h\p{\lambda}} Re ( h ( λ ) ) is positive. Observe that because S ∗ = S − 1 S^* = S^{-1} S ∗ = S − 1 ,
h ( λ ) ‾ = ⟨ ( S + λ I ) ( S − λ I ) − 1 v , v ⟩ ‾ = ⟨ v , ( S + λ I ) ( S − λ I ) − 1 v ⟩ = ⟨ ( S − 1 + λ ‾ I ) ( S − 1 − λ ‾ I ) − 1 v , v ⟩ . \begin{aligned}
\overline{h\p{\lambda}}
&= \overline{\inner{\p{S + \lambda I}\p{S - \lambda I}^{-1}v, v}} \\
&= \inner{v, \p{S + \lambda I}\p{S - \lambda I}^{-1}v} \\
&= \inner{\p{S^{-1} + \conj{\lambda} I}\p{S^{-1} - \conj{\lambda} I}^{-1}v, v}.
\end{aligned} h ( λ ) = ⟨ ( S + λ I ) ( S − λ I ) − 1 v , v ⟩ = ⟨ v , ( S + λ I ) ( S − λ I ) − 1 v ⟩ = ⟨ ( S − 1 + λ I ) ( S − 1 − λ I ) − 1 v , v ⟩ .
Thus, if we set A ( λ ) = ( S + λ I ) ( S − λ I ) − 1 + ( S − 1 + λ ‾ I ) ( S − 1 − λ ‾ I ) − 1 A\p{\lambda} = \p{S + \lambda I}\p{S - \lambda I}^{-1} + \p{S^{-1} + \conj{\lambda} I}\p{S^{-1} - \conj{\lambda} I}^{-1} A ( λ ) = ( S + λ I ) ( S − λ I ) − 1 + ( S − 1 + λ I ) ( S − 1 − λ I ) − 1 and note that everything commutes, we can factor to get
A ( λ ) = ( S − λ I ) − 1 [ ( S + λ I ) ( S − 1 − λ ‾ I ) + ( S − 1 + λ ‾ I ) ( S − λ I ) ] ( S − 1 − λ ‾ I ) − 1 = ( S − λ I ) − 1 ( I + λ S − 1 − λ ‾ S − ∣ λ ∣ 2 + I − λ S − 1 + λ ‾ S − ∣ λ ∣ 2 ) ( S − 1 − λ ‾ I ) − 1 = ( S − λ I ) − 1 ( 2 I − 2 ∣ λ ∣ 2 ) ( S − 1 − λ ‾ I ) − 1 . \begin{aligned}
A\p{\lambda}
&= \p{S - \lambda I}^{-1}
\br{\p{S + \lambda I}\p{S^{-1} - \conj{\lambda} I} + \p{S^{-1} + \conj{\lambda}I}\p{S - \lambda I}}
\p{S^{-1} - \conj{\lambda}I}^{-1} \\
&= \p{S - \lambda I}^{-1}
\p{I + \lambda S^{-1} - \conj{\lambda}S - \abs{\lambda}^2 + I - \lambda S^{-1} + \conj{\lambda}S - \abs{\lambda}^2}
\p{S^{-1} - \conj{\lambda}I}^{-1} \\
&= \p{S - \lambda I}^{-1}
\p{2I - 2\abs{\lambda}^2}
\p{S^{-1} - \conj{\lambda}I}^{-1}.
\end{aligned} A ( λ ) = ( S − λ I ) − 1 [ ( S + λ I ) ( S − 1 − λ I ) + ( S − 1 + λ I ) ( S − λ I ) ] ( S − 1 − λ I ) − 1 = ( S − λ I ) − 1 ( I + λ S − 1 − λ S − ∣ λ ∣ 2 + I − λ S − 1 + λ S − ∣ λ ∣ 2 ) ( S − 1 − λ I ) − 1 = ( S − λ I ) − 1 ( 2 I − 2 ∣ λ ∣ 2 ) ( S − 1 − λ I ) − 1 .
Thus, we get
Re ( h ( λ ) ) = ⟨ A ( λ ) v , v ⟩ 2 = ⟨ ( S − λ I ) − 1 ( 2 I − 2 ∣ λ ∣ 2 ) ( S − 1 − λ ‾ I ) − 1 v , v ⟩ 2 = ⟨ ( S − λ I ) − 1 ( I − ∣ λ ∣ 2 ) ( S − 1 − λ ‾ I ) − 1 v , v ⟩ = ( 1 − ∣ λ ∣ 2 ) ⟨ ( S − 1 − λ ‾ I ) − 1 v , ( S − 1 − λ ‾ I ) − 1 v ⟩ = ( 1 − ∣ λ ∣ 2 ) ∥ ( S − 1 − λ ‾ I ) − 1 v ∥ 2 , \begin{aligned}
\Re\p{h\p{\lambda}}
&= \frac{\inner{A\p{\lambda}v, v}}{2} \\
&= \frac{\inner{\p{S - \lambda I}^{-1}\p{2I - 2\abs{\lambda}^2}\p{S^{-1} - \conj{\lambda}I}^{-1}v, v}}{2} \\
&= \inner{\p{S - \lambda I}^{-1}\p{I - \abs{\lambda}^2}\p{S^{-1} - \conj{\lambda}I}^{-1}v, v} \\
&= \p{1 - \abs{\lambda}^2}\inner{\p{S^{-1} - \conj{\lambda}I}^{-1}v, \p{S^{-1} - \conj{\lambda}I}^{-1}v} \\
&= \p{1 - \abs{\lambda}^2}\norm{\p{S^{-1} - \conj{\lambda}I}^{-1}v}^2,
\end{aligned} Re ( h ( λ ) ) = 2 ⟨ A ( λ ) v , v ⟩ = 2 ⟨ ( S − λ I ) − 1 ( 2 I − 2 ∣ λ ∣ 2 ) ( S − 1 − λ I ) − 1 v , v ⟩ = ⟨ ( S − λ I ) − 1 ( I − ∣ λ ∣ 2 ) ( S − 1 − λ I ) − 1 v , v ⟩ = ( 1 − ∣ λ ∣ 2 ) ⟨ ( S − 1 − λ I ) − 1 v , ( S − 1 − λ I ) − 1 v ⟩ = ( 1 − ∣ λ ∣ 2 ) ∥ ∥ ( S − 1 − λ I ) − 1 v ∥ ∥ 2 ,
which is strictly larger than 0 0 0 as long as v ≠ 0 v \neq 0 v = 0 . Indeed, ∣ λ ∣ < 1 \abs{\lambda} < 1 ∣ λ ∣ < 1 , and ( S − 1 − λ ‾ ) − 1 \p{S^{-1} - \conj{\lambda}}^{-1} ( S − 1 − λ ) − 1 is invertible; in particular, ( S − 1 − λ ‾ I ) − 1 v ≠ 0 \p{S^{-1} - \conj{\lambda}I}^{-1}v \neq 0 ( S − 1 − λ I ) − 1 v = 0 .