Fall 2009 - Problem 3

decomposition of scales, measure theory

Let f ⁣:[0,1]R\func{f}{\br{0,1}}{\R} be continuous with

min0x1f(x)=0.\min_{0 \leq x \leq 1} f\p{x} = 0.

Assume that for all 0a<b10 \leq a < b \leq 1 we have

abf(x)minaybf(y)dx12ba.\int_a^b f\p{x} - \min_{a \leq y \leq b} f\p{y} \,\diff{x} \leq \frac{1}{2} \abs{b - a}.
  1. Prove that for all λ0\lambda \geq 0:

    {xf(x)>λ+1}12{xf(x)>λ}\abs{\set{x \mid f\p{x} > \lambda + 1}} \leq \frac{1}{2} \abs{\set{x \mid f\p{x} > \lambda}}

    Here S\abs{S} denotes the Lebesgue measure of the set SS.

  2. Prove that for all 1c<21 \leq c < 2,

    01cf(x)dx1002c.\int_0^1 c^{f\p{x}} \,\diff{x} \leq \frac{100}{2 - c}.
Solution.
  1. Set Eλ={xf(x)>λ}E_\lambda = \set{x \mid f\p{x} > \lambda}. By continuity of ff, Eλ=f1((λ,))E_\lambda = f^{-1}\p{\p{\lambda, \infty}} is open, so we can write

    Eλ=n=1(an,bn),E_\lambda = \bigcup_{n=1}^\infty \p{a_n, b_n},

    where the (an,bn)\p{a_n, b_n} are pairwise disjoint. On [an,bn]\br{a_n, b_n}, ff attains its minimum by continuity and satisfies

    λminxEλf(x)minx[an,bn]f(x),\lambda \leq \min_{x \in E_\lambda} f\p{x} \leq \min_{x \in \br{a_n, b_n}} f\p{x},

    so we have for all n1n \geq 1 that

    anbnf(x)λdx12bnan.\int_{a_n}^{b_n} f\p{x} - \lambda \,\diff{x} \leq \frac{1}{2}\abs{b_n - a_n}.

    By countable additivity of the Lebesgue measure, adding these up gives

    Eλf(x)λdx12Eλ.\int_{E_\lambda} f\p{x} - \lambda \,\diff{x} \leq \frac{1}{2}\abs{E_\lambda}.

    Notice that

    Eλf(x)λdx=Eλ+1f(x)λdx+{xλ<f(x)λ+1}f(x)λdxEλ+1(λ+1)λdx+xλ<f(x)λ+1λλdx=Eλ+1.\begin{aligned} \int_{E_\lambda} f\p{x} - \lambda \,\diff{x} &= \int_{E_{\lambda+1}} f\p{x} - \lambda \,\diff{x} + \int_{\set{x \mid \lambda < f\p{x} \leq \lambda + 1}} f\p{x} - \lambda \,\diff{x} \\ &\geq \int_{E_{\lambda+1}} \p{\lambda + 1} - \lambda \,\diff{x} + \int_{x \mid \lambda < f\p{x} \leq \lambda + 1} \lambda - \lambda \,\diff{x} \\ &= \abs{E_{\lambda+1}}. \end{aligned}

    Thus,

    Eλ+112Eλ,\abs{E_{\lambda+1}} \leq \frac{1}{2} \abs{E_\lambda},

    which was what we wanted to show.

  2. Notice that because f(x)0f\p{x} \geq 0 and bounded,

    [0,1]={xf(x)=0}n=0(EnEn+1).\br{0, 1} = \set{x \mid f\p{x} = 0} \cup \bigcup_{n=0}^\infty \p{E_n \setminus E_{n+1}}.

    From the previous part, we have for all n0n \geq 0 that

    En+112En    En+112n+1E012n+1.\abs{E_{n+1}} \leq \frac{1}{2} \abs{E_n} \implies \abs{E_{n+1}} \leq \frac{1}{2^{n+1}} \abs{E_0} \leq \frac{1}{2^{n+1}}.

    So,

    01cf(x)dx{xf(x)=0}cf(x)dx+n=0EnEn+1cf(x)dx{xf(x)=0}c0dx+n=0EnEn+1cn+1dx[0,1]dx+n=0Encn+1dx=1+n=0cn+1En1+n=0cn+12n=1+c1c2=2+c2c1002c.\begin{aligned} \int_0^1 c^{f\p{x}} \,\diff{x} &\leq \int_{\set{x \mid f\p{x} = 0}} c^{f\p{x}} \,\diff{x} + \sum_{n=0}^\infty \int_{E_n \setminus E_{n+1}} c^{f\p{x}} \,\diff{x} \\ &\leq \int_{\set{x \mid f\p{x} = 0}} c^0 \,\diff{x} + \sum_{n=0}^\infty \int_{E_n \setminus E_{n+1}} c^{n+1} \,\diff{x} \\ &\leq \int_{\br{0,1}} \,\diff{x} + \sum_{n=0}^\infty \int_{E_n} c^{n+1} \,\diff{x} \\ &= 1 + \sum_{n=0}^\infty c^{n+1} \abs{E_n} \\ &\leq 1 + \sum_{n=0}^\infty \frac{c^{n+1}}{2^n} \\ &= 1 + \frac{c}{1 - \frac{c}{2}} \\ &= \frac{2 + c}{2 - c} \\ &\leq \frac{100}{2 - c}. \end{aligned}