Fall 2009 - Problem 2

Fourier analysis, Laplacian, Lp spaces

Let vv be a trigonometric polynomial in two variables, that is,

v(x,y)=n,mZan,me2πi(nx+my),v\p{x, y} = \sum_{n,m\in\Z} a_{n,m}e^{2\pi i\p{nx + my}},

with only finitely many non-zero coefficients an,ma_{n,m}. If

u=vΔvu = v - \Delta v

where Δ=x2+y2\Delta = \partial_x^2 + \partial_y^2 is the Laplacian, prove that

vL([0,1]×[0,1])CuL2([0,1]×[0,1])\norm{v}_{L^\infty\p{\br{0,1}\times\br{0,1}}} \leq C \norm{u}_{L^2\p{\br{0,1}\times\br{0,1}}}

for some constant CC independent of vv.

Solution.

From a straightforward calculation,

u(x,y)=n,mZ(14π2(n2+m2))an,me2πi(nx+my),u\p{x, y} = \sum_{n,m\in\Z} \p{1 - 4\pi^2\p{n^2 + m^2}} a_{n,m} e^{2\pi i\p{nx+my}},

so by orthonormality of the e2πi(nx+my)e^{2\pi i\p{nx+my}}, we have

uL2([0,1]×[0,1])2=n,mZ(14π2(n2+m2))2an,m2.\norm{u}_{L^2\p{\br{0,1}\times\br{0,1}}}^2 = \sum_{n,m\in\Z} \p{1 - 4\pi^2\p{n^2 + m^2}}^2 \abs{a_{n,m}}^2.

On the other hand, by Cauchy-Schwarz,

v2(n,mZan,m)2=(n,mZ114π2(n2+m2)(14π2(n2+m2))an,m)2(n,mZ1(14π2(n2+m2))2)uL2([0,1]×[0,1])2C2uL2([0,1]×[0,1])2\begin{aligned} \abs{v}^2 \leq \p{\sum_{n,m\in\Z} \abs{a_{n,m}}}^2 &= \p{\sum_{n,m\in\Z} \frac{1}{1 - 4\pi^2\p{n^2 + m^2}} \cdot \p{1 - 4\pi^2\p{n^2 + m^2}}\abs{a_{n,m}} }^2 \\ &\leq \p{\sum_{n,m\in\Z} \frac{1}{\p{1 - 4\pi^2\p{n^2 + m^2}}^2}} \norm{u}_{L^2\p{\br{0,1}\times\br{0,1}}}^2 \\ &\eqqcolon C^2 \norm{u}_{L^2\p{\br{0,1}\times\br{0,1}}}^2 \end{aligned}

The series defined as C2C^2 converges, and so taking square roots, we get

vL([0,1]×[0,1])CuL2([0,1]×[0,1]).\norm{v}_{L^\infty\p{\br{0,1}\times\br{0,1}}} \leq C \norm{u}_{L^2\p{\br{0,1}\times\br{0,1}}}.