Fall 2016 - Problem 8

category theory

Prove that if a functor F ⁣:CSet\func{\mathcal{F}}{\cat{C}}{\Set} has a left adjoint functor, then F\mathcal{F} is representable.

Solution.

Let L ⁣:SetC\func{L}{\Set}{\cat{C}} be its left adjoint so that for any XSetX \in \Set and CCC \in \cat{C}, we have

HomC(L(X),C)HomSet(X,F(C)).\Hom_{\cat{C}}\p{L\p{X}, C} \simeq \Hom_{\Set}\p{X, \mathcal{F}\p{C}}.

Set X={}X = \set{*}, which gives

HomC(L({}),C)HomSet({},F(C))F(C),\Hom_{\cat{C}}\p{L\p{\set{*}}, C} \simeq \Hom_{\Set}\p{\set{*}, \mathcal{F}\p{C}} \simeq \mathcal{F}\p{C},

so FF is represented by L({})L\p{\set{*}}.