Fall 2016 - Problem 3

module theory

Let AA be an integral domain with field of fractions FF. For an AA-ideal a\mathfrak{a}, prove that a\mathfrak{a} is an AA-projective ideal finitely generated over AA if there exists an AA-submodule b\mathfrak{b} of FF such that ab=A\mathfrak{a}\mathfrak{b} = A, where ab\mathfrak{a}\mathfrak{b} is an AA-submodule of FF generated by abab for all aaa \in \mathfrak{a} and bbb \in \mathfrak{b}.

Solution.

Since ab=A\mathfrak{a}\mathfrak{b} = A, there exist a1,,anaa_1, \ldots, a_n \in \mathfrak{a} and b1,,bnbb_1, \ldots, b_n \in \mathfrak{b} such that i=1naibi=1\sum_{i=1}^n a_ib_i = 1. For each ii, define f ⁣:aA\func{f}{\mathfrak{a}}{A} via aabia \mapsto ab_i so that

a=i=1naaibi=i=1naifi(a).a = \sum_{i=1}^n aa_ib_i = \sum_{i=1}^n a_if_i\p{a}.

fif_i is well-defined as ab=A\mathfrak{a}\mathfrak{b} = A, and note that this implies a1,,ana_1, \ldots, a_n generate a\mathfrak{a}.

Now consider AnA^n with basis {e1,,en}\set{e_1, \ldots, e_n}, and define π ⁣:Ana\func{\pi}{A^n}{\mathfrak{a}} via eiaie_i \mapsto a_i. Since the aia_i generate a\mathfrak{a}, this is a surjection. On the other hand, consider the map σ ⁣:aAn\func{\sigma}{\mathfrak{a}}{A^n}, ai=1nfi(a)eia \mapsto \sum_{i=1}^n f_i\p{a}e_i. We have

(πσ)(a)=π(i=1neifi(a))=i=1naifi(a)=a,\p{\pi \circ \sigma}\p{a} = \pi\p{\sum_{i=1}^n e_if_i\p{a}} = \sum_{i=1}^n a_if_i\p{a} = a,

i.e., πσ=ida\pi \circ \sigma = \id_{\mathfrak{a}}, so the sequence

0kerπAna00 \to \ker{\pi} \to A^n \to \mathfrak{a} \to 0

splits. Thus, akerπAn\mathfrak{a} \oplus \ker{\pi} \simeq A^n, so a\mathfrak{a} is a direct summand of a free module, hence projective.