Fall 2016 - Problem 2

representation theory

Let KK be a semi-simple quadratic extension over Q\Q and consider the regular representation ρ ⁣:KM2(Q)\func{\rho}{K}{M_2\p{\Q}}. Compute the index of ρ(K×)\rho\p{K^\times} in the normalizer of ρ(K×)\rho\p{K^\times} in GL2(Q)\GL_2\p{\Q}, and justify your answer.

Solution.

By Artin-Wedderburn, KK is a product of at most two matrix algebras: KMn1(D1)×Mn2(D2)K \simeq M_{n_1}\p{D_1} \times M_{n_2}\p{D_2}. Since KK is a two-dimensional Q\Q-algebra, we have n12dimD1+n22dimD2=2n_1^2 \dim{D_1} + n_2^2 \dim{D_2} = 2.

Without loss of generality, suppose n1=1n_1 = 1 so either dimD1=2\dim{D_1} = 2 and n2=0n_2 = 0, or dimD1=dimD2=n2=1\dim{D_1} = \dim{D_2} = n_2 = 1. In the first case, KK is a field since KK is a two-dimensional algebra and Q\Q is commutative, so KK is a two-dimensional field extension, i.e., KQ(d)K \simeq \Q\p{\sqrt{d}} for some non-square dQd \in \Q. In the second case, we simply have KQ×QK \simeq \Q \times \Q.

Case 1: KQ(d)K \simeq \Q\p{\sqrt{d}}

With {1,d}\set{1, \sqrt{d}} as our Q\Q-basis, we see that a+bda + b\sqrt{d} acts via

ρ(a+bd)=(abdba).\rho\p{a + b\sqrt{d}} = \begin{pmatrix} a & bd \\ b & a \end{pmatrix}.

Note that ρ(K×)\rho\p{K^\times} is self-centralizing. If A=(pqrs)A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} commutes with ρ(d)\rho\p{\sqrt{d}}, then

(qdpsdr)=(pqrs)(0d10)=(0d10)(pqrs)=(drdspq),\begin{pmatrix} q & dp \\ s & dr \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 0 & d \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & d \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} dr & ds \\ p & q \end{pmatrix},

which gives p=sp = s and q=drq = dr, so Aρ(K×)A \in \rho\p{K^\times}. Notice also that ρ(K×)\rho\p{K^\times} is not self-normalizing. For example,

(1001)(abdba)(1001)1=(abdba)=ρ(abd).\begin{pmatrix} 1 & \phantom{-}0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & bd \\ b & a \end{pmatrix} \begin{pmatrix} 1 & \phantom{-}0 \\ 0 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} \phantom{-}a & -bd \\ -b & \phantom{-}a \end{pmatrix} = \rho\p{a - b\sqrt{d}}.

In particular, the centralizer CC is a proper (normal) subgroup of the normalizer NN. Finally, an equivalence class ACN/CAC \in N/C acts on ρ(K×)\rho\p{K^\times} via conjugation: let ABAB be a representative of ACAC so that

ABρ(a+bd)B1A1=Aρ(a+bd)A1=ρ(a+bd),AB \rho\p{a + b\sqrt{d}} B^{-1}A^{-1} = A \rho\p{a + b\sqrt{d}} A^{-1} = \rho\p{a' + b'\sqrt{d}},

where the first equality comes from centrality and the second comes from normality. Note that if b=0b = 0, then ρ(a)=aI2\rho\p{a} = aI_2, so this action fixes Q\Q. Thus, we may identify N/CGal(K/Q)N/C \leq \Gal\p{K/\Q}, but Gal(K/Q)=2\abs{\Gal\p{K/\Q}} = 2, and we have shown that N/C>1\abs{N/C} > 1, so N/C=[N:ρ(K×)]=2\abs{N/C} = \br{N : \rho\p{K^\times}} = 2.

Case 2: KQ×QK \simeq \Q \times \Q

Using the canonical Q\Q-basis, pointwise multiplication gives the representation

ρ(a,b)=(a00b).\rho\p{a, b} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.

The normalizer of invertible 2×22 \times 2 matrices is the subgroup S2diag2S_2 \rtimes \diag_2, where S2S_2 acts on invertible diagonal matrices by permuting the columns. Hence, because ρ(K×)diag2\rho\p{K^\times} \simeq \diag_2, it follows that the index of ρ(K×)\rho\p{K^\times} in its normalizer is S2=2\abs{S_2} = 2.