
Math 170S January 21, 2020

1. Biased estimators. Let X ∼ Unif[0, θ], and suppose n = 1 for simplicity.

(a) Show that the likelihood function is

L(x; θ) =

{
1
θ 0 ≤ x ≤ θ

0 otherwise

(b) Show that the MLE for θ is x.

(c) Show that the method-of-moments estimator for θ is 2x.

(d) Which of these estimators is/are biased?

2. Maximum likelihood estimators. Let X ∼ Binom(2, p).

(a) Show that the log-likelihood function is

`(x1, . . . , xn; p) = A0 log(1 − p)2 +A1 log(2p(1 − p)) +A2 log p2

where Ak is the number of xi that are equal to k. (So if our sample
is 0, 2, 2, 2, 1, 0, 0, 2, 2, then A0 = 3, A1 = 1, A2 = 5).

(b) Show that the MLE is 1
2X̄.

(c) Is the MLE biased?

3. Two-parameter estimation. Let X ∼ Unif[θ1, θ2]. Show that the
MLEs of θ1 and θ2 are minxi and maxxi, respectively.
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(1)

(a)

We use the PDF of a uniform random variable:

L(x; θ) = fθ(x) =

{
1
θ 0 ≤ x ≤ θ

0 otherwise

(b)

Let’s rewrite the likelihood function to be more explicitly a function of θ:

L(x; θ) = fθ(x) =

{
1
θ θ ≥ x

0 otherwise

Since 1/θ is decreasing, this is maximized at the point θ = x.

(c)

We compute the first population moment as E[X] = θ/2. For the method of
moments, we want the first population moment to be estimated by the first
sample moment:

θ̂

2
=

1

n
·
∑

xi = x

Solving, we get θ̂ = 2x.

(d)

The expectation of the MLE is E[X] = θ/2, which is not θ. So this estimator is
biased. Meanwhile, the expectation of the MoME is E[2X] = 2θ/2 = θ, so this
estimator is unbiased.

(2)

(a)

We find the log-likelihood function as the logarithm of the joint PMF:

`(x1, . . . , xn; p) = logL(x1, . . . , xn; p)

= log

n∏
i=1

(
2

xi

)
pxi(1 − p)2−xi

=

n∑
i=1

log

((
2

xi

)
pxi(1 − p)2−xi

)
If we break up the sum into the case where xi = 0, xi = 1, and xi = 2, then

we can separate out the terms as

A0 log(1 − p)2 +A1 log(2p(1 − p)) +A2 log(p2)
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(b)

Before solving, we simplify with properties of logs:

` = 2A0 log(1 − p) +A1 log 2 +A1 log p+A1 log(1 − p) + 2A2 log(p)

Then, to maximize `, we take the derivative with respect to p:

∂`

∂p
=

−2A0

1 − p
+ 0 +

A1

p
− A1

1 − p
+

2A2

p

=
−2A0p+A1(1 − p) −A1p+ 2A2(1 − p)

p(1 − p)

=
(−2A0 − 2A1 − 2A2)p+A1 + 2A2

p(1 − p)

Setting this equal to zero we get

(−2A0 − 2A1 − 2A2)p̂+A1 + 2A2 = 0

which means

p̂ =
1

2
· A1 + 2A2

A0 +A1 +A2
=

∑
Xi

2n
=
X̄

2

(c)

We compute

E[p̂] = E[X̄/2] =
1

2
E[X̄] =

1

2
[̄Xi] =

1

2
· 2p = p

so it’s an unbiased estimator.

(3)

Let’s write down the likelihood function:

L(x1, . . . , xn; θ1, θ2) =

{
1

θ2−θ1 θ1 ≤ all xi ≤ θ2

0 otherwise

The likelihood function is zero if the θs are not outside of all the xi, and
it gets smaller the further apart θ1 and θ2 are. Therefore, it’s maximized if
θ1 = minxi and θ2 = maxxi, as required.


