
Math 31B Week 3 - Thursday August 22, 2019

1. Find the critical points and extreme values of the given functions on the
specified domains:

(a) f(x) = x4 − 8x2 + 8 on [−3, 5].

(b) h(x) = |sinx+ 1/2| on [0, 2π].

(c) g(x) = cos(1/x) on [−1, 1], where we define g(0) = 0.

2. Suppose we have a twice-differentiable function f where f(0) = f(1) =
f(2) = 0. Show that there must exist some x ∈ [0, 2] such that f ′′(x) = 0.
(Hint: Use a theorem three times).

3. (Forward looking). Suppose we have some many-times differentiable func-
tion f and we want to approximate it near zero. We know that the linear
approximation is

f(0) + f ′(0)x.

This is a linear function that agrees with f in its zeroth and first derivatives
at 0. If we instead try a quadratic approximation, then because of the extra
term we can make a function that agrees with f in its zeroth, first, and
second derivatives at 0. Determine what this approximation should be
(in terms of f(0), f ′(0), and f ′′(0)). Now try it with a cubic - this time
you should have agreement of the first three derivatives. What would an
approximating polynomial of degree n look like? What should happen as
n gets big?
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Solutions

1(a)

Take the derivative to get

f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x− 2)(x+ 2)

This has roots 0 and ±2 in the given interval. So we have to check these
three points in addition to the endpoints:

f(−3) = (−3)4 − 8(−3)2 + 8 = 17

f(−2) = (−2)4 − 8(−2)2 + 8 = −8

f(0) = (0)4 − 8(0)2 + 8 = 8

f(2) = (2)4 − 8(2)2 + 8 = −8

f(5) = (5)4 − 8(5)2 + 8 = 433

We can see that the maximum is f(5) = 433 and the minimum is tied between
f(2) = −8 and f(−2) = −8. (Note that since f is an even function we know
that f(2) = f(−2)).

1(b)

Recall that the derivative of |x| is

(abs)′(x) =


−1 x < 0

undef. x = 0

1 x > 0

So, using the chain rule we get

h′(x) =


− cosx sinx+ 1/2 < 0

undef. sinx+ 1/2 = 0

cosx sinx+ 1/2 > 0

meaning that the critical points are where cosx = 0 or sinx + 1/2 = 0. These
are the points π/2, 3π/2 (from the first condition) and 7π/6 and 11π/6 (from
the second condition). So we have six points to check:

h(0) = | sin 0 + 1/2| = 1/2

h(π/2) = | sin(π/2) + 1/2| = 3/2

h(7π/6) = | sin(7π/6) + 1/2| = 0

h(3π/2) = | sin(3π/2) + 1/2| = 1/2

h(11π/6) = | sin(11π/6) + 1/2| = 0

h(2π) = | sin 2π + 1/2| = 1/2
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So the maximum occurs at h(π/2) = 3/2, and the minimum twice, at
h(7π/6) + h(11π/6) = 0. (Note that the second one has to be the minimum
since h is nonnegative).

1(c)

We can take the derivative to find

g′(x) =

(
− 1

x2

)
· (− sin(1/x)) (x 6= 0)

Setting this equal to zero, we see that the first factor is never zero. If the
second factor is zero, it means sin(1/x) = 0, so 1/x = nπ for some integer n.
That means the critical points are 1/(nπ) for nonzero1 integers n as well as the
point x = 0 where the derivative does not exist.

Plugging in the (infinitely many) critical values we get

g(1/(nπ)) = cos(nπ) =

{
1 n even

−2 n odd

g(0) = 0.

So the minimum is −1 which is attained at all of the points x = 1/(nπ) where n
is odd; and the maximum is 1 which is attained at all of the points x = 1/(nπ)
where n is even and nonzero.

2

The MVT (or Rolle’s theorem) tells us that there is a value c1 ∈ (0, 1) such that
f ′(c1) = 0. It also tells us that there is a value c2 ∈ (1, 2) such that f ′(c2) = 0.
But f ′ is also a differentiable function; and so the MVT applies to it, telling us
that for some value d ∈ (c1, c2) we have f ′′(d) = 0.

3

Suppose we have some quadratic approximation p2(x) for f(0). If we let

p2(x) = c0 + c1x+ c2x
2

then we get

p2(0) = c0

p′2(0) = c1

p′′2(0) = 2c2.

1If n = 0, then 1/(nπ) does not make sense.
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If we want these to agree with f , then we must let c0 = f(0), c1 = f ′(0), and
c2 = f ′′(0)/2. So our quadratic approximation is

p2(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2.

If we do the same for a cubic we get

p3(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3.

and in general

pn(x) =

n∑
k=0

f (k)(0)

k!
xk

As n → ∞, we’d like to say that the approximations get better and better, so
the pn approach f in some way. This turns out to work (for many functions),
which is the idea behind Taylor series (which will be explored in much more
depth in 31B).


