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Note 10

16.5. Applications of Multiple Integrals

Recall that multiple integrals are defined as the limit of Riemann sums, and so, they can be under-

stood as an ideal version of “sum of small quantities”. And, although they are often understood as

content (area/volume/hypervolume) of a region in a higher dimension, this is only one possible

interpretation of integral. In general, the meaning of integral is inherited from that of the small

quantities being summed up.

For instance, ifD is a region in the plane and it is partitioned into subregionsD1, · · · ,DN , each

of which is so small that f is almost constant over it. Then by chooseing arbitrary point Pj from

each subregion Dj, ∫∫
D

f (x)dx ≈
N

∑
j=1

f (Pj)∆Aj, ∆Aj = area(Dj).

Now, under the geometric interpretation, this quantity is understood as the (signed) volume of the

region under the graph z = f (x, y) over D, and this is because we regard f (x) as height function

so that each summand

f (Pj)∆Aj︸ ︷︷ ︸
volume

= f (Pj)︸ ︷︷ ︸
height

× ∆Aj︸ ︷︷ ︸
base area

represents the volume of the narrow box with the base area ∆Aj and height f (Pj). This way, the

integral inherits the meaning as “volume” from that of each small volumes f (Pj)∆Aj.

1. Total amount

In this part, we instead consider the interpretation

[quantity] = [density per area]× [area] or [density per volume]× [volume].

Indeed, writing δ in place of f so as to emphasize its role as a density function,

[quantity over Dj] = δ(Pj)︸ ︷︷ ︸
density

× ∆Aj︸ ︷︷ ︸
area

and hence these sum up to the approximate total quantity

[total quantity] =
N

∑
j=1

[quantity over Dj] ≈
N

∑
j=1

δ(Pj)∆Aj ≈
∫∫
D

δ(x, y)dA,

which will then become the true equality by passing to the limit. Accordingly, we have
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The total amount of a quantity distributed over a region according to a density function is

the integral of the density function over the region.

• In 2D, [total amount] =
∫∫
D

δ(x, y)dA.

• In 3D, [total amount] =
∫∫
W

δ(x, y, z)dV.

Example (Total Mass)

Compute the total mass of the plate D in the following figure, assuming a mass density of

f (x, y) = x2/(x2 + y2) g/cm2.

π
3

10

D

x (cm)

y (cm)

Solution. Since both f (x, y) and D are easily described in polar coordinates, we compute the total

mass using the Change of Variables Formula in polar coordinates.

• The outer circle has radius 10 sec(π
3 ) = 20 cm.

• The line x = 10 is converted to r = 10 sec θ in polar coordinates.

• These determine D as the radially simple region 0 ≤ θ ≤ π
3 , 10 sec θ ≤ r ≤ 20.

• The function is written as f (x, y) = f (r cos θ, r sin θ) = cos2 θ in polar coordinates.

So it follows that
[total mass] =

∫∫
D

f (x, y)dA

=
∫ π

3

0

∫ 20

10 sec θ
r cos2 θ drdθ

=
∫ π

3

0
(200 cos2 θ − 50)dθ

= 25
√

3 +
50π

3
in gram.
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2. Average density/quantity

The average value f of a function f over the region is:

• In 2D, f =
[total amount of f ]

[total area]
=

∫∫
D f (x, y)dA∫∫
D 1 dA

.

• In 3D, f =
[total amount of f ]

[total volume]
=

∫∫
W f (x, y, z)dV∫∫

W 1 dV
.

Example (Average Temperature)

Suppose that f (x, y) = 300+ axy in kelvin describes the temperature map of the metal plate

in the following figure, where a = 10 K/cm2. Compute the average temperature across D.

(10,−10)

20

(10, 10)

D
x (cm)

y (cm)

Solution. The area of D is 200 cm2, and so,

[avg. temp.] =
1

200

∫∫
D

f (x, y)dA.

The integral can be computed in several ways.

• Splitting the region along the line x = 10, the integral becomes

∫∫
D

f (x, y)dA =
∫ 10

0

∫ x

−x
(300 + 10xy)dydx +

∫ 20

10

∫ 20−x

x−20
(300 + 10xy)dydx

=
∫ 10

0
2x(300 + 10xy)dx +

∫ 20

10
(40− 2x)(300 + 10xy)dx

= 60000 K·cm2.

• Alternatively, we may invoke the linear map T(u, v) = (u+ v, v− u). Since T(1, 0) = (1,−1)

and T(0, 1) = (1, 1), T maps the squareR = [0, 10]× [0, 10] to the regionD. Also, Jac(T) = 2.
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So by the Change of Variables Formula,

∫∫
D

f (x, y)dA =
∫∫
R

f (u + v, v− u)
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

=
∫ 10

0

∫ 10

0
(600 + 20v2 − 20u2)dudv

= 60000 K·cm2.

• Yet another way is to observe that
∫∫
D xy dA = 0 by the symmetry around the x-axis, and

so, ∫∫
D

f (x, y)dA =
∫∫
D

300 dA = 300 · area(D).

Both computations show that the average temperature is 300 K.

3. Centroid of a region

The centroid of a region is the average position of all points of the region.

• In 2D, the centroid of the region D is

〈x, y〉 =
∫∫
D〈x, y〉dA∫∫
D 1 dA

• In 3D, the centroid of the regionW is

〈x, y, z〉 =
∫∫∫

W 〈x, y, z〉dV∫∫∫
W 1 dV

Example (Centroid of a quarter circle)

Find the centroid of the quarter circle D = {(x, y) : x2 + y2 ≤ R2, x ≥ 0, y ≥ 0}.

Solution. Recall that area(D) = πR2

4 . Then its centroid (x, y) is

x =
4

πR2

∫∫
D

x dA =
4

πR2

∫ π
2

0

∫ R

0
r2 cos θ drdθ

=
4R
3π

∫ π
2

0
cos θ dθ =

4R
3π

.

Similar computation shows that y = 4R/3π as well, which intuitively makes sense because the

region is symmetric through the line y = x.
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Example (Centroid is compatible with linear map)

Suppose that:

• T is a linear map with Jac(T) 6= 0.

• D0 is a region in the uv-plane with the centroid (u, v).

Then show that the centroid of T(D0) is T(u, v).

Solution. Write T = (Au+Cv, Bu+ Dv) for constants A, B, C, D and recall that Jac(T) = AD− BC
is constant and area(T(D0)) = |Jac(T)| area(D0) holds. Now write (x, y) for the centroid of T(D0).

Then by the Change of Variables Formula,

x =
1

area(T(D0))

∫∫
T(D0)

x dxdy

=
1

�����|Jac(G)| area(D0)

∫∫
T(D0)

(Au + Cv)
�
�

�
��

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣dudv

= Au + Cv,

which is exactly the x-coordinate of T(u, v). A similar computation shows that y = Bu + Dv as

well, and therefore the desired claim follows.

4. Center of Mass

Suppose we have a plate with masses m1, · · · , mN at positions x1, · · · , xN :

m1

x1

m2

x2

m3

x3

m4

x4

m5

x5

m6

x6

At which point should we place the fulcrum in order to balance the plate? The law of physics tells

that the fulcrum should be placed at the weighted average xCM of xi’s:

xCM =
x1m1 + · · ·+ xNmN

m1 + · · ·+ mN
.

Now, instead of point masses, consider the mass which is continuously distributed according the

density function δ(x). In such case, the idea of Riemann sum kicks in and the above weighted

average becomes

xCM =

∫
xδ(x)dx∫
δ(x)dx

.

This idea generalizes to higher dimensions:
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The center of mass (COM) of a region is the weighted average of positions.

• In 2D, the COM of the region D is

〈xCM, yCM〉 =
∫∫
D〈x, y〉δ(x, y)dA∫∫
D δ(x, y)dA

• In 3D, the COM of the regionW is

〈xCM, yCM, zCM〉 =
∫∫∫

W 〈x, y, z〉δ(x, y, z)dV∫∫∫
W δ(x, y, z)dV

.

If the density function is constant (i.e., the density is uniform), then the COM coincides with

the centroid.
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