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Note 9

16.6. Change of Variables

Last time, we shifted focus to another perspective, where one coordinate system is related to an-

other by a map that actually transform points and sets. Then we analyzed how the points and sets

transform under linear maps. In particular, we learned that areas change under linear maps in a

uniform manner. We generalize this observation to nonlinear maps and establish the Change of

Variables Formula.

Jacobian determinant and Change of Variables Formula

The Jacobian determinant (or simply the Jacobian) of a map G(u, v) = (x(u, v), y(u, v)) is the

determinant

Jac(G) =
∂(x, y)
∂(u, v)

:=

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣ =
∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

.

In general, Jac(G) is a function of u, v. So, borrowing the function notation, it makes sense to write

Jac(G)(P) = Jac(G)(u, v) to denote the Jacobian of G evaluated at the point P = (u, v).

Example (Jacobian of a linear map)

For the linear map G(u, v) = (Au + Cv, Bu + Dv), its Jacobian is constant with the value

Jac(G) =

∣∣∣∣∣A C
B D

∣∣∣∣∣ = AD− BC.

Consequently, for any rectangleR in the uv-plane,

area(G(R)) = |Jac(G)| area(R).

The above example does not generalize directly to nonlinear maps. However, if we restrict to

a very small region D0 in the uv-plane, then G behaves almost linearly, and so, an approximate

result

area(G(D0)) ≈ |Jac(G)(P)| area(D0)

holds, where P ∈ D0. A bit more precise formulation takes the following form: If P ∈ D0 and G is

a “nice” map, then

|Jac(G)(P)| = lim
|D0|→0

area(G(D0))

area(D0)
.

Here, |D0| → 0 indicates the limit as the diameter of D tends to zero.
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Now suppose in addition that f is a continuous function over G(D0). If D0 is still very small, then

G(D0) would also be very small, rendering f almost constant over the region G(D0). Therefore

we anticipate: ∫∫
G(D0)

f (x, y)dxdy ≈ f (P) area(G(D0))

≈ f (P) |Jac(G)(P)| area(D0)

≈
∫∫
D0

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

(16.1)

Although the above heuristics are only approximately true for small domains, this generalizes to

a precise identity under reasonable assumptions.

Theorem (Change of Variables Formula)

Let G : D0 → R2 satisfy:

• G is one-to-one at least on the interior of D0.

• G is C1, i.e., G has continuous partial derivatives.

If f (x, y) is continuous, then

∫∫
G(D0)

f (x, y)dxdy =
∫∫
D0

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

Here,
∣∣∣ ∂(x,y)

∂(u,v)

∣∣∣ denotes the absolute value of the Jacobian.

Remark. The assumption that G is C1 is more or less a convenience that makes the statement and

proof of theorem easier. That being said, for the purpose of this course, we will rarely bother with

this technicality.

However, the assumption that G is one-to-one is crucial. In analogy with summation, this

condition is essential for preventing “over-counting”. For example, consider the polar coordinate

map G(r, θ) = (r cos θ, r sin θ).

• G maps the rectangleR = [0, 1]× [0, 2π] to the unit disk, and G is indeed one-to-one on the

interior ofR. Note that G is not one-to-one on all ofR, since the entire left side {0} × [0, 2π]

of R is mapped to a single point (0, 0) in the xy-plane, and the top and bottom side of R is
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“glued” in the image since G(r, 0) = G(r, 2π). Such over-counting on the boundary of R
does not harm the validity of the Change of Variables Formula.

• On the other hand, G also maps the rectangle R = [0, 1] × [0, 6π] to the unit disk. In this

case, however, this is done in such a way that each point of the disk is “coverd” at least

three times. Since the Change of Variables Formula does not capture this over-counting, the

formula is inapplicable in this case.

Sketch of Proof. We may decompose D0 into small subdomains D0,1, · · · ,D0,N . Then applying the

approximation (16.1) to each subdomain D0,j, we expect:

∫∫
G(D0,j)

f (x, y)dxdy ≈
∫∫
D0,j

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv (16.2)

But since G is one-to-one, G(D0,1), · · · , G(D0,N) comprise a non-overlapping decomposition of the

region G(D). (If G is not one-to-one, then some of these subregions may overlap. This is where

the one-to-one assumption is used.)

So we have ∫∫
G(D0)

f (x, y)dxdy =
N

∑
j=1

∫∫
G(D0,j)

f (x, y)dxdy.

Approximating each summand using (16.2),

∫∫
G(D0)

f (x, y)dxdy ≈
N

∑
j=1

∫∫
D0,j

f (x(u, v), y(u, v)) |Jac(G)(u, v)| dudv

=
∫∫
D0

f (x(u, v), y(u, v))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv.

This approximation can be shown to become a precise identity when passed to the limit as the

diameters of subdivided regions tend to zero.

It is sometimes useful to represent the Jacobian of (x, y) = G(u, v) in terms of x, y. This can be

done by the following formula.
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Theorem

If (u, v) = G−1(x, y) denotes the inverse map of (x, y) = G(u, v), then

[Jac(G) evaluated at (u, v)] =
1

[Jac(G−1) evaluated at (x, y)]

provided Jac(G−1) 6= 0. This may be written in the suggestive form:

∂(x, y)
∂(u, v)

=

[
∂(u, v)
∂(x, y)

]−1

.

Finally, it is worth to mention that the Change of Variables Formula extends to 3D mutatis mutandis,

if we define the Jacobian of (x, y, z) = G(u, v, w) by

Jac(G) =
∂(x, y, z)
∂(u, v, w)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Examples

Example (Polar coordinates revisited)

Let G(r, θ) = (r cos θ, r sin θ) be the polar coordinate map. Then

Jac(G)=

∣∣∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = (cos θ)(r cos θ)− (−r sin θ)(sin θ) = r.

So the Change of Variables Formula in polar coordinate is recovered.

Example (Exercise 24)

Find a linear map T that maps [0, 1] × [0, 1] to the parallelogram P in the xy-plane with

vertices (0, 0), (2, 2), (1, 4), (3, 6). Then calculate the double integral of e2x−y over P via

change of variables.
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x

y

P

(2, 2)

(3, 6)

(1, 4)

Solution.
Step 1. Define the map. P is spanned by two vectors 〈2, 2〉 and

〈1, 4〉. So we may choose T as a linear map that maps 〈1, 0〉 and

〈0, 1〉 to those vectors. One such choice is

T(1, 0) = (2, 2) and T(0, 1) = (1, 4),

which then determines T as

T(u, v) = (2u + v, 2u + 4v).

Step 2. Compute the Jacobian. Since T is linear, its Jacobian is

easily computed as

Jac(G) =

∣∣∣∣∣2 1

2 4

∣∣∣∣∣ = 6.

Step 3. Express f (x, y) in terms of the new variables. Plugging (x, y) = T(u, v) to the function

f (x, y) = e2x−y, we get

f (x, y) = f (T(u, v)) = f (2u + v, 2u + 4v) = e2u−2v.

Step 3. Apply the Change of Variables Formula. Applying the change of variables shows that

dxdy =

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣dudv = 6dudv,

and so, ∫∫
R

e2x−y dxdy =
∫∫

[0,1]×[0,1]
e2u−2v

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv

=
∫ 1

0

∫ 1

0
6e2u−2v dudv =

3
2
(e2 − 1)(1− e−2).

�

Example (Exercise 35)

Calculate
∫∫
D

e9x2+4y2
dxdy, where D is the interior of the ellipse

( x
2

)2
+
( y

3

)2 ≤ 1.

Solution.
It is natural to choose (x, y) = G(u, v) so that G parametrizes D using a square in the uv-plane.

Motivated by the polar coordinates, we pick

G(u, v) = (2u cos v, 3u sin v).
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If we setR = [0, 1]× [0, 2π], then G is one-to-one on the interior ofR and G(R) = D. Moreover,

Jac(G) =

∣∣∣∣∣2 cos v −2u sin v
3 sin v 3u cos v

∣∣∣∣∣ = 6u and e9x2+4y2
= e36u2

.

Combining altogether, we get

∫∫
D

e9x2+4y2
dxdy =

∫∫
R

e36u2
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv =
∫ 2π

0

∫ 1

0
6ue36u2

dudv =
π

6
(e36 − 1).

�

Example (Exercise 41)

Compute I =
∫∫
D
(x2 − y2)dxdy, where

D = {(x, y) : 2 ≤ xy ≤ 4, 0 ≤ x− y ≤ 3, x ≥ 0, y ≥ 0}.

1st Solution. It is natural to choose the map (x, y) = G(u, v) such that u = xy and v = x− y. Then

D is the image of the rectangleR = [2, 4]× [0, 3] under G. Also, by solving these equations,

x =
v +
√

v2 + 4u
2

, y =
−v +

√
v2 + 4u

2
.

Here, the signs are chosen so that this indeed defined a map from the rectangle R to D which is

one-to-one on the interior ofR. Then the Jacobian of G is computed as

Jac(G) =

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

1√
v2 + 4u

v +
√

v2 + 4u
2
√

v2 + 4u
1√

v2 + 4u
v−
√

v2 + 4u
2
√

v2 + 4u

∣∣∣∣∣∣∣∣∣ = −
1√

v2 + 4u
.

Also, plugging (x, y) = G(u, v) to the integrand x2 − y2 gives

x2 − y2 = v
√

v2 + 4u.

So by the Change of Variables Formula,

I =
∫∫
R

v
√

v2 + 4u
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dudv =
∫ 3

0

∫ 4

2
v dudv = 9.

�

2nd Solution. Again we choose the map (x, y) = G(u, v) by the relations u = xy and v = x− y, so

that D is the image of the rectangle R = [2, 4]× [0, 3] under G. In this case, however, we directly
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work with x, y coordinates before converting everything in terms of u, v. Then the Jacobian of G−1

is computed as

Jac(G−1) =
∂(u, v)
∂(x, y)

=

∣∣∣∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣y x
1 −1

∣∣∣∣∣ = −(x + y).

So by the Change of Variables Formula together with the relation Jac(G) = [Jac(G−1)]−1,

I =
∫∫
R
(x2 − y2)

∣∣∣∣ ∂(u, v)
∂(x, u)

∣∣∣∣−1

dudv =
∫∫
R
(x2 − y2) · 1

x + y
dudv

=
∫∫
R
(x− y)︸ ︷︷ ︸

=v

dudv =
∫ 3

0

∫ 4

2
v dudv = 9.

�
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