
Math 32B - Lecture 2 Winter 2020

Note 7

16.4. Integration in Polar, Cylindrical, and Spherical Coordinates

Last time, we learned how to convert a double integral in rectangular coordinates to another one

in polar coordinates.

Theorem: Change of variables formula in polar coordinates

Let D a radially simple region

D : α1 ≤ θ ≤ α2 and r1(θ) ≤ r ≤ r2(θ).

Then ∫∫
R

f (x, y) dA =
∫ α2

α1

∫ r2(θ)

r1(θ)
f (r cos θ, r sin θ) rdrdθ .

This formula was obtained by noting that, partitioning the region D in polar coordinates, then the

area ∆Aij of each small polar subrectangleRij is approximately rj∆rj∆θi.

Today, we will apply similar ideas to the triple integral in two coordinate systems, namely the

cylindrical coordinates and spherical coordinates.

(1) Cylindrical coordinates This is a straightforward generalization of polar coordinates to 3D,

by adding z coordinate to polar coordinate. Indeed, a point in the space can be written by(
(x, y, z)

in rectangular coordinates

)
←→

(
(r, θ, z)

in cylindrical coordinates,

)

where the conversion formula is given by

x = r cos θ, y = r sin θ, z = z.

By the Fubini’s theorem, we immediately obtain

Theorem: Change of variables formula in cylindrical coordinates

LetW be described, in cylindrical coordinates, by

W : α1 ≤ θ ≤ α2, r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ).

Then ∫∫∫
W

f (x, y, z) dV =
∫ α2

α1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)
f (r cos θ, r sin θ, z) rdzdrdθ .
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The planar region given by
α1 ≤ θ ≤ α2.

The planar region D given by
α1 ≤ θ ≤ α2,

r1(θ) ≤ r ≤ r2(θ).

The solid regionW given by
α1 ≤ θ ≤ α2,

r1(θ) ≤ r ≤ r2(θ),
z1(r, θ) ≤ z ≤ z2(r, θ).

Figure 1: Progressively carving out the solid regionW described in the theorem.

In a typical question, W will not be given explicitly, either because it is described in another

coordinates system or because it is only implicitly defined. That being said, we will first need to

expressW in cylindrical coordinates, and then use the change of variables formula to evaluate the

triple integral.

Exercise. Compute the integral of f (x, y, z) = z over the region W within the cylinder x2 + y2 ≤ 4,
where 0 ≤ z ≤ y.

Solution. We first expressW in cylindrical coordinates.

• The condition x2 + y2 ≤ 4 converts to 0 ≤ r ≤ 2.

• From the condition, we obtain y ≥ 0. This converts to 0 ≤ θ ≤ π.

The above conditions altogether tells thatW projects onto the semidisk

given by 0 ≤ θ ≤ π and 0 ≤ r ≤ 2. Then

• The condition 0 ≤ z ≤ y converts to 0 ≤ z ≤ r sin θ.

Therefore

W : 0 ≤ θ ≤ π, 0 ≤ r ≤ 2, 0 ≤ z ≤ r sin θ.

Also, f (x, y, z) = f (r cos θ, r sin θ, z) = z. Then by the change of vari-

ables formula,

∫∫∫
W

f (x, y, z)dV =
∫ π

0

∫ 2

0

∫ r sin θ

0
zr dzdrdθ

=
∫ π

0

∫ 2

0

(r sin θ)2

2
· r drdθ

=
∫ π

0
2 sin2 θ dθ = π.

The last step follows from the formula
∫

sin2 θ dθ = 1
2 (θ − sin θ cos θ) + C. �
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Exercise. Use cylindrical coordinates to calculate
∫∫∫

W
z
√

x2 + y2 dV, where

W : x2 + y2 ≤ z ≤ 8− (x2 + y2).

Solution. We first expressW in cylindrical coordinates.

• The inequality converts to r2 ≤ z ≤ 8− r2. This naturally deter-

mines the bounds of z.

• There is no restriction to θ. Or, geometrically speaking, the re-

gion is axially symmetric. So we get 0 ≤ θ ≤ 2π.

• For r2 ≤ 8− r2 to hold, we must have r ≤ 2.

Summarizing, we get

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 8− z2.

Also, the integrand becomes z
√

x2 + y2 = zr. So by the theorem,

∫∫∫
W

z
√

x2 + y2 dV =
∫ 2π

0

∫ 2

0

∫ 8−r2

r2
zr · rdzdrdθ

=
∫ 2π

0

∫ 2

0
r2
(
(8− r2)2

2
− (r2)2

2

)
drdθ

=

(∫ 2π

0
dθ

)(∫ 2

0
(32r2 − 8r4)dr

)
=

1024π

15
.

�

Exercise. Use cylindrical coordinates to find the volume of a sphere of radius 2a from which a central
cylinder of radius a has been removed.

Solution. Call the regionW . We observe:

• W projects onto the annulus a ≤ r ≤ 2a.

• Since W lies inside of the sphere, we have r2 + z2 ≤ (2a)2. This

determines the bounds of z as −
√

4a2 − r2 ≤ z ≤
√

4a2 − r2.

Combining altogether,

W : 0 ≤ θ ≤ 2π, a ≤ r ≤ 2a, −
√

4a2 − r2 ≤ z ≤
√

4a2 − r2.

From this, we get

volume(W) =
∫∫∫

W
dV =

∫ 2π

0

∫ 2a

a

∫ √4a2−r2

−
√

4a2−r2
rdzdrdθ

=
∫ 2π

0

∫ 2a

a
2r
√

4a2 − r2 drdθ.
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The inner integral can be easily computed by substituting u = 4a2 − r2. Then du = −2rdr and

hence ∫ r=2a

r=a
2r
√

4a2 − r2 dr =
∫ u=3a2

u=0

√
u du =

[
2
3

u
3
2

]u=3a2

u=0
= 2
√

3a3.

Therefore

volume(W) =
∫ 2π

0
2
√

3a3 dθ = 4π
√

3a3.

�

(2) Spherical coordinates. Roughly speaking, it is obtained by applying the idea of polar coordi-

nates to zr-plane in cylindrical coordinates. That is, we want to write z = ρ cos φ and r = ρ sin φ.

This gives (
(x, y, z)

in rectangular coordinates

)
←→

(
(ρ, θ, φ)

in spherical coordinates,

)

where the conversion formula is given by

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ.

The “grid surfaces” are as follows:

• ρ = ρ0 is the sphere of radius ρ0 centered at the origin.

• φ = φ0 is a cone around the z-axis.

• θ = θ0 is a half-plane starting from the z-axis.

Now we want to derive the change of variables formula for spherical coordinates. To this end,

note that the small “spherical wedge”, corresponding to

4



Math 32B - Lecture 2 Winter 2020

Figure 2: Grid surfaces

the region [ρ, ρ + ∆ρ]× [θ, θ + ∆θ]× [φ, φ + ∆φ] in spherical coordinates

is approximately a box with the volume

(∆ρ)(ρ∆φ)(ρ sin φ∆θ) = ρ2 sin φ∆ρ∆φ∆θ.

So, similarly as before, we get

Theorem: Change of variables formula in spherical coordinates

LetW be a centrally simple region, i.e., described in spherical coordinates by

W : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ).
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Then∫∫∫
W

f (x, y, z) dV =
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2(θ,φ)

ρ1(θ,φ)
f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) ρ2 sin φ dρdφdθ .

Exercise. Evaluate the integral of f (x, y, z) = z over the region

W : 0 ≤ θ ≤ π

3
, 0 ≤ φ ≤ π

2
, 1 ≤ ρ ≤ 2.

Solution. Plugging the conversion formula, we get f (x, y, z) = ρ cos φ.

So by the change of variables formula,

∫∫∫
W

f (x, y, z)dV =
∫ π

3

0

∫ π
2

0

∫ 2

1
ρ3 cos φ sin φ dzdφdθ

=

(∫ π
3

0
dθ

)(∫ π
2

0
cos φ sin φ dφ

)(∫ 2

1
ρ3 dρ

)
=

π

3
· 1

2
· 15

4
=

5π

8
.

�

Exercise. Evaluate the integral of f (x, y, z) =
√

x2 + y2 + z2 over the region
W given by x2 + y2 + z2 ≤ 2z.

Solution. We expressW in spherical coordinates.

• The inequality can be rearranged to x2 + y2 + (z− 1)2 ≤ 1, which is the unit sphere centered

at (0, 0, 1). This entirely lies in the region z ≥ 0, which is a centrally simple region 0 ≤ θ ≤ 2π

and 0 ≤ φ ≤ π/2.

• It remains to determine the range of ρ. Plugging the conversion formula to the inequality,

we get 0 ≤ ρ ≤ 2 cos φ.

Summarizing,

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2, 0 ≤ ρ ≤ 2 cos φ.

Also, f (x, y, z) = ρ. So we get

∫∫∫
W

f (x, y, z)dV =
∫ 2π

0

∫ π
2

0

∫ 2 cos φ

0
ρ3 sin φ dρdφdθ

=
∫ 2π

0

∫ π
2

0
4 cos4 φ sin φ dφdθ =

∫ 2π

0

4
5

dθ =
8π

5
.

In the third step, we utilized the formula
∫

cos4 φ sin φ dφ = − 1
5 cos5 φ + C, which can be easily

derived by substituting u = cos φ. �
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