Math 32B Lecture 2, Winter 2020

Homework 9

Name:

- Exercises are taken from J. Rogawski, C. Adams, R. Franzosa *Calculus, Multivariable,* 4th Ed., W. H. Freeman & Company.

- The questions marked with a star (*) are either more difficult or of the form that is not intended for an exam. Nonetheless, they are worth thinking about.

18.1 Green's Theorem

1. Let C_R be the circle of radius *R* centered at the origin. Use the Green's Theorem to determine

$$\oint_{\mathcal{C}_3} \mathbf{F} \cdot \mathbf{dr},$$

where **F** is a vector field such that

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot \mathbf{dr} = 6$$

and

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = x^2 + y^2 \quad \text{on} \quad 1 \le x^2 + y^2 \le 9.$$

UID:

Section:

area
$$(\mathcal{D}) = \frac{1}{2} \oint_{\partial \mathcal{D}} x \, \mathrm{d}y - y \, \mathrm{d}x$$

to compute the area of the region $\ensuremath{\mathcal{D}}$ bounded by the curve in polar coordinates:

Math 32B Lecture 2, Winter 2020	Home	work 9	Due March 9, in class
Name:		Section:	UID:
3. Let $x^3 + y^3 = 3xy$ be the folium of Descar	rtes. xy	(c) Find the area of	the loop of the folium.
(a) Show that the loop of the folium has a terms of $t = y/x$ given by $x = -\frac{3t}{y} = -\frac{3t^2}{y}$	a parametrization in $(0 < t < \infty)$		
(b) Show that $x dy - y dx = \frac{9t^2}{(1+t^3)^2}$ Hint: By the Quotient Rule, we have $x^2 d(t)$	$\frac{1}{2} dt.$ $y/x) = x dy - y dx.$		

(b) Prove that the area of the polygon with vertices (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) is equal to

$$\frac{1}{2}\sum_{i=1}^{n}(x_{i}y_{i+1}-x_{i+1}y_{i}),$$

where we set $(x_{n+1}, y_{n+1}) = (x_1, y_1)$.

Math 32B Lecture 2, Winter 2020	Home	work 9	Due March 9, in class
Name:		Section:	UID:
In Exercises 7–9, calculate $curl(\mathbf{F})$ and then ap compute the flux of $curl(\mathbf{F})$ through the given si gral.	ply Stokes' Theorem to ırface using a line inte-	8. $\mathbf{F} = \langle yz, -xz, z \rangle$ between the two unit normal vector	z^3 , that part of the cone $z = \sqrt{x^2 + y^2}$ that lies planes $z = 2$ and $z = 4$ with upward-pointing or.
7. F = $\langle e^{z^2} - y, e^{z^3} + x, \cos(xz) \rangle$, the upper h $x^2 + y^2 + z^2 = 1$, $z \ge 0$ with outward-point	nalf of the unit sphere ing normal.		

Math 32B Lecture 2, Winter 2020	Home	work 9	Due March 9, in class
Name:		Section:	UID:
Name: 9. $\mathbf{F} = \langle yz, xz, xy \rangle$, that part of the cylinder between the two planes $z = -1$ and $z = 2$ wi unit normal vector.	$x^2 + y^2 = 1$ that lies th outward-pointing	Section: In Exercises 10–1 ing the flux of cu 10. F = {yz, (1,0,2), (1,1,2) from above.	UID: 1, apply Stokes' Theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ by find- rl(\mathbf{F}) across an appropriate surface xz, xy, C is the square with vertices $(0, 0, 2)$, , $(0, 1, 2)$, oriented counter-clockwise as viewed

Math 32B Lecture 2, Winter 2020	Homework 9	Due March 9, in class
Name:	Section:	UID:
11. $\mathbf{F} = \langle y - 2z 4x \rangle$ <i>C</i> is the boundary of	of that portion of the 12 . Let S be the n	portion of the plane $z = -x$ contained in the

11. $\mathbf{F} = \langle y, -2z, 4x \rangle$, *C* is the boundary of that portion of the plane x + 2y + 3z = 1 that is in the first octant (i.e., $x, y, z \ge 0$) of the space, oriented counter-clockwise as viewed from above.

12. Let S be the portion of the plane z = -x contained in the half-cylinder of radius *R* depicted in the following figure:

Use Stokes' Theorem to calculate the circulation of

$$\mathbf{F} = \langle z, -x, y + 2z \rangle$$

around the boundary of ${\mathcal S}$ (a half-ellipse) in the counter-clockwise direction when viewed from above.

Hint: Show that curl(F) *is orthogonal to the normal vector to the plane.*

Homework 9 Due March 9, in class
Section: UID:
Homework 9 Due March 9, in class Section: UID: +z ² = 1, Evaluate 14. Let A be the vector potential and B the magnetic field of infinite solenoid of radius <i>R</i> in Example 4. Use Stokes' They to compute: (a) The flux of B through a surface whose boundary is a of in the <i>xy</i> -plane of radius <i>r < R</i> . curl(A), again us- (b) The circulation of A around the boundary <i>C</i> of a surface ing outside the solenoid.
$\mathbf{F} = \mathbf{F}$ tegral a

Math 32B Lecture 2, Winter 2020	Home	work 9	Due March 9, in class
Name:		Section:	UID:
 Name: 15. A uniform magnetic field B has constant strength <i>b</i> in the <i>z</i>-direction, i.e., B = (0,0,<i>b</i>). (a) Verify that A = ¹/₂B × r is a vector potential for B, where r = (<i>x</i>, <i>y</i>, 0). 		Section: 16. Let $\mathbf{F} = \langle -y, x, z \rangle$ • C_1 : the circle $x^2 +$ • C_2 : any closed cu Suppose that both C_2 viewed from above,	UID: ²). Let $-y^2 = R^2$, $z = 0$, and rve going around the cylinder $x^2 + y^2 = R^2$. C_1 and C_2 are oriented counter-clockwise as as in the figure:
(b) Calculate the flux of B through the recta <i>B</i> , <i>C</i> and <i>D</i> in: A = (6, 0, 4) $F = (6, 0, 0)$ $B = (6, 3, 0)$ Rogawski et al., <i>Multivariable Calculu</i> © 2019 W. H. Freeman and Compan	ngle with vertices A , 4) f = (0, 3, 0) y y y y	$x extsf{A}$ Compute Hint: Show that $\oint_{C_2} \mathbf{F}$	$\int_{C_2} \mathbf{F} \cdot \mathbf{dr}.$ $f \cdot \mathbf{dr} = \oint_{C_1} \mathbf{F} \cdot \mathbf{dr} \text{ using the Stokes' Theorem.}$

| 9

Math 32B Lecture 2, Winter 2020	Homework 9	Due March 9, in class
Name:	Section: UID:	
 7. Suppose you know two things about a violation of F has a vector potential A (but A is unknow). The circulation of A around the unit circle (oriented counter-clockwise) is 25. Determine the flux of F through the surfactigure, oriented with an "upward-pointing range." 	ector field F : own). e $x^2 + y^2 = 1$, $z = 0$ e <i>S</i> in the following normal ^{"1} .	
Rogawski et al., Multivariable Calculus, 4e, © 2019 W. H. Freema and Company	y an	

¹The usage of this term is technically incorret because the unit normal vector **n** for the surface S in the figure can point both the positve and negative *z*-direction. To make the problem precise, S is oriented in such a way that ∂S with the boundary orientation is oriented counter-clockwise when viewed from above.