Math 32B Lecture 2, Winter 2020	Home	work 8			Due March 2, in class
Name:		Section:	I	JID:	
Exercises are taken from J. Rogawski, C. Adams <i>Multivariable</i> , 4th Ed., W. H. Freeman & Compar	ny.	2. $y = 4 - z^2$,	$0 \leq x$	$x \leq z \leq 3;$	f(x,y,z) = -2 - 8z.
17.4 Parametrized Surfaces a Integrals	nd Surface				
In Exercises 1–4, calculate $\iint_{\mathcal{S}} f(x,y,z) dS$ for function.	the given surface and				
1. $G(u,v) = (u\cos v, u\sin v, 2u), 0 \le u$ $f(x,y,z) = z(x^2 + y^2).$	≤ 1 , $0 \leq u \leq 1$;				

Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
Name:	Section:	UID:
$x^{2} + y^{2} + z^{2} = 4, z \ge 0; \qquad f(x, y, z) =$ lint: You might find $\int \sin^{3} \phi d\phi = \frac{1}{12} \cos 3\phi$	$f(r u z) - r \perp u \perp$	plane $x + y + 2z = 4$, where $x, y, z \ge 0$ + $3z$.

Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
Name:	Section:	UID:
Name: . (Exercise 17.4-30) Use spherical coordinates urface area of a sphere of radius R.	s to compute the 6. (Exercise 17. the origin. Expl	4-28) Let S be the sphere of radius R centered a lain using symmetry: $\iint_{S} x^{2} dS = \iiint_{S} y^{2} dS = \iiint_{S} z^{2} dS$ t $\iint_{S} x^{2} dS = \frac{4}{3}\pi R^{4}$

Math 32B Lecture 2, Winter 2020 Home	ework 8	Due March 2, in class
Name:	Section:	UID:
	Section: 17.5 Surf 1. (Exercise 17.5-: face parametrized $-1 \le v \le 4$. Calcu (a) N and $\mathbf{F} \cdot \mathbf{N}$ a	

Name:Section:UID:In Exercises 2-5, calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for the given oriented surface.3. $\mathbf{F} = \langle e^s, y, z \rangle$, $G(r, s) = (rs, r + s, r)$, $0 \le r \le 1$, $0 \le s \le 1$, positively oriented.2. $\mathbf{F} = \langle z, x, y \rangle$, plane $2x - 5y + z = 1$, $0 \le x \le 1$, $0 \le y \le 1$, upward-pointing normal.3. $\mathbf{F} = \langle e^s, y, z \rangle$, $G(r, s) = (rs, r + s, r)$, $0 \le r \le 1$, $0 \le s \le 1$, positively oriented.
In Exercises 2-5, calculate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ for the given oriented surface. 2. $\mathbf{F} = \langle z, x, y \rangle$, plane $2x - 5y + z = 1$, $0 \le x \le 1$, $0 \le y \le 1$, upward-pointing normal. 3. $\mathbf{F} = \langle c^{z}, y, z \rangle$, $G(r, s) = (rs, r + s, r)$, $0 \le r \le 1$, $0 \le s \le 1$, positively oriented.

Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
Name:	Section:	UID:
	Section:	
	6	

Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
Name:	Section:	UID:
6. Let \mathcal{S} be the portion of the ellipsoid	7. Recall th	at
$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{4}\right)^2 + \left(\frac{z}{3}\right)^2 = 1$		$\mathbf{e}_r = rac{1}{r} \langle x, y, z angle, \qquad r = \sqrt{x^2 + y^2 + z^2}$
where $x, y, z \ge 0$. Calculate the flux of $\mathbf{F} = x\mathbf{i}$		radial vector field. Calculate the flux of $\mathbf{F} = r^{-2}\mathbf{e}$ sphere of radius <i>R</i> centered at the origin.

Hint: Parametrize S using a modified form of spherical coordinates.

Math 32B Lecture 2, Winter 2020	Home	ework 8	Due March 2, in class
Name:		Section:	UID:
Name: 18.1 Green's Theorem In Exercises 1–5, use Green's Theorem to evaluat ent the curve counterclockwise unless otherwise 1. $\oint_{C} y^2 dx + x^2 dy$, where <i>C</i> is the bounda $[0,1] \times [0,1]$.	e m e the line integral. Ori- indicated.	Section:	$+ e^{-y^2} dy$, where C is the boundary of the triar
2. $\oint_{\mathcal{C}} 7y dx - 3x dy$, where \mathcal{C} is the boundary vertices $(-1, 0)$, $(1, 0)$, and $(0, 1)$.	y of the triangle with	4. $\oint_{\mathcal{C}} x^2 y dx$, w	where \mathcal{C} is the unit circle centered at the origin.

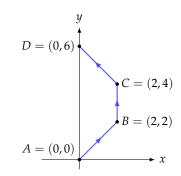
Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
Name:	Section:	UID:

5. $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x + y, x^2 - y \rangle$ and \mathcal{C} is the boundary of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ for $0 \le x \le 1$.

6. Evaluate

$$I = \int_{\mathcal{C}} (5\sin x + 2y) \, \mathrm{d}x + (4x + y) \, \mathrm{d}y$$

for the non-closed path C_1 joining from *A* to *B* to *C* to *D*:



Hint: Let C_2 be the line segment from A to D. Then $C_1 - C_2$ is a closed path oriented counterclockwise. Apply the Green's Theorem to this closed path, and use this to compute I.

Name: Name: Section: UID: 8. Use $\int_C y dx$ to compute the area of the region bound by the curve $r = \sin 2\theta$ in polar coordinates: $\begin{pmatrix} \frac{x}{\theta} \end{pmatrix}^2 + \left(\frac{y}{b}\right)^2 = 1.$ y $r = \sin 2\theta$ y $r = \sin 2\theta$ x	Math 32B Lecture 2, Winter 2020	Homework 8	Due March 2, in class
$\left(\frac{\pi}{a}\right) + \left(\frac{3}{b}\right) = 1.$	Name:	Section:	UID:
	Name: Use $\oint_{\mathcal{C}} y \mathrm{d}x$ to compute the area of the ellipse	Section:	UID: dx to compute the area of the region boun 2 θ in polar coordinates: y $r = \sin 2\theta$