Math 32B Lecture 2, Winter 2020	Homework 6		Due February 14, in class	
Name:	1	Section: I	UID:	
 Exercises are taken from J. Rogawski, C. Adams, R. Franzosa <i>Calculus, Multivariable</i>, 4th Ed., W. H. Freeman & Company. 17.2 Line Integrals Preliminary questions in the textbook 1. What is the line integral of the constant function <i>f</i>(<i>x</i>, <i>y</i>, <i>z</i>) = 10 over a curve <i>C</i> of length 5? 		Exercises outside the textbook 1. Let C be the line segment joining $(0,0,0)$ to $(3,2,1)$, and $f(x,y,z) = 2y + xz$. In each of the following, evaluate $\int_{C} f(x,y,z) ds$ using the parametrization specified. (a) $\mathbf{r}(t) = \langle 3t, 2t, t \rangle$ for $0 \le t \le 1$.		
2. Which of the following have a zero into segment from (0, 0) to (0, 1)?	egral over the vertical			
(a) $f(x,y) = x$ (b) $f(x,y)$ (c) $F(x,y) = \langle x,0 \rangle$ (d) $F(x,y)$ (e) $F(x,y) = \langle 0,x \rangle$ (f) $F(x,y)$ <i>Note: There may be multiple answers.</i>				
		(b) $r(t) = \langle 3\cos t, 2 \rangle$	$\cos t, \cos t \rangle$ for $0 \le t \le \frac{\pi}{2}$.	

4. Suppose that C has length 5. What is the value of

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{dr}$$

in each of the following cases?

- (a) $\mathbf{F}(P)$ is normal to C at all points P on C.
- **(b) F**(*P*) is a unit vector pointing in the negative direction along the curve.

Math 32B Lecture 2, Winter 2020	Home	work 6	Due February 14, in class
Name:	·	Section:	UID:
2. Let C be the curve $y = x^{-1/2}$ for $1 \le x \le$ to right, and let $\mathbf{F}(x, y) = \langle x(y+1), 2x^2 \rangle$. If ing, evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$	2, oriented from left in each of the follow-	3. Integrate $f(x, y)$ $y^2 = 1, y \ge 0.$	$= y\sqrt{2+x}$ over the upper semicircle $x^2 +$
JC			
(a) $\mathbf{r}(t) = \langle t, t^{-1/2} \rangle$ for $1 \le t \le 2$.			
(b) $\mathbf{r}(t) = \langle e^t, e^{-t/2} \rangle$ for $0 \le t \le \ln 2$.		4. Integrate $f(x, y, z)$ (0, 0, 1) to (2, 0, 0) to	$) = ye^{z^2}$ over the piecewise linear path from $(0, 1, 1)$.

Math 32B Lecture 2, Winter 2020	Home	work 6	Due February 14, in class
Name:		Section:	UID:
5. Calculate $\int_{\mathcal{C}} 1 ds$, where the curve \mathcal{C} is pa $\langle 1 + 2t, 3 - t, 4 + 2t \rangle$ for $0 \le t \le 1$. What does sent?	rametrized by $\mathbf{r}(t) =$ es this integral repre-	7. Integrate $F(x, y)$ $y \ge 0$.	$= \langle xy, -2 \rangle \text{ over } \frac{1}{4}x^2 + y^2 = 1 \text{ with } x \ge 0,$
6. Integrate $F(x, y) = \langle x^2, xy \rangle$ over the line s $(2, -1)$.	egment from (0, 1) to	8. Compute $\int_C x^2 dx$ oriented from left to	, where C is the curve $y = x^3$ for $0 \le x \le 3$, right.

Math 32B Lecture 2, Winter 2020	Homework 6		Due February 14, in class
Name:		Section:	UID:
Name: 9. Compute $\int_{\mathcal{C}} 3 dx + (x - y) dy + z dz$, where by $\mathbf{r}(t) = \langle 2 + t^{-1}, t^2, t^2 \rangle$ for $2 \le t \le 4$.	ere \mathcal{C} is parametrized	Section: 11. A charged semic $\mathbf{r}(t) =$ (in meters) has char $\rho($ Find the electric pot	UID: circle $\langle \cos t, \sin t, 0 \rangle, -\frac{\pi}{2} \le t \le \frac{\pi}{2}$ ge density $x, y, 0) = 10^{-8}(2 - x) \text{ C/m.}$ tential at $P = (0, 0, a)$.
10. Compute the total mass of a metal wire for $\mathbf{r}(t) = \langle \cos t, \sin t, \sin^2 t \rangle, \qquad 0$ in centimeters, assuming a mass density of $\rho(x, y, z) = \frac{3}{\sqrt{1 + 4x^2y^2}} g/s^2$	loop ≤ $t ≤ 2π$ //cm.	12 . Calculate the w moves along the pa	ork done by $\mathbf{F} = \langle x, y, -10 \rangle$ when the object th $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le 4\pi$.

Name:

13. Let C_1 be a path from *P* to *Q*, and C_2 be an oriented loop at *Q* as below:

and F be a vector field such that

 $\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = 3 \quad \text{and} \quad \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = 6.$

Determine:

(a) The integral of **F** over that path that traverses C_1 in the opposite orientation, i.e.,

$$\int_{-\mathcal{C}_1} \mathbf{F} \cdot \mathbf{dr}$$

(b) The integral of **F** over the path obtained by concatenating C_1 and C_2 , i.e.,

$$\int_{\mathcal{C}_1+\mathcal{C}_2} \mathbf{F} \cdot \mathbf{dr}$$

(c) The integral of **F** over the path that traverses C_1 from *P* to *Q* and then back to *P*, i.e.,

$$\int_{\mathcal{C}_1-\mathcal{C}_1} \mathbf{F} \cdot \mathbf{dr}$$

(d) The integral of **F** over the path that traverses the loop C_2 four times in the positive orientation of C_2 , i.e.,

$$\int_{4\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

Section:

UID:

14. Consider the *vortex field* F given by

$$\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$

Let r(t) and $\theta(t)$ be real-valued functions on [a, b] and let C be a curve avoiding the origin and parametrized by:

$$\mathbf{r}(t) = \langle r(t) \cos(\theta(t)), r(t) \sin(\theta(t)) \rangle, \quad a \le t \le b.$$

Do the following:

(a) Show that $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \theta'(t)$.

(b) Show that

5

$$\int_{\mathcal{C}} \frac{-y \, \mathrm{d}x + x \, \mathrm{d}y}{x^2 + y^2} = \theta(b) - \theta(a),$$

i.e., the amount of rotation by the curve \mathcal{C} about the origin in the counter-clockwise direction.

(c) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ for the curve \mathcal{C} given by:

Math 32B Lecture 2, Winter 2020	Homework 6		Due February 14, in class
Name:		Section:	UID:
17.3. Conservative Vector	Fields	3. Consider the	vector field
Exercises outside the textbook			$\mathbf{F}(x,y,z) = \langle yz^2, xz^2, 2xyz + 1 \rangle.$
1. Let $\mathbf{F}(x, y, z) = \nabla(x^2y + e^z)$, and let \mathcal{C} be an to $(3, -1, 0)$. Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.	ny path from (0,0,0)	Its domain <i>D</i> is (a) Show that condition.	\mathbf{R}^2 , which is simply connected. Do the following \mathbf{F} is conservative by verifying the cross-partia
2. Let C be any path from (a, c) to (b, d) . Com	npute		
$\int_{\mathcal{C}} x \mathrm{d}x + 3y^2 \mathrm{d}y.$		(b) Compute ment from	$f(x, y, z) = \int_{\overline{OP}} \mathbf{F} \cdot d\mathbf{r}$, where \overline{OP} is the line seg the origin <i>O</i> to $P = (x, y, z)$.

Math 32B Lecture 2, Winter 2020	Homework 6		Due February 14, in class
Name:		Section:	UID:
(c) Verify that <i>f</i> computed in the previous tential function of F .	s step is indeed a po-	5. $\mathbf{F} = \langle y, z, x \rangle$.	
(d) Find the value of $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where \mathcal{C} $\mathbf{r}(t) = \langle t^{2020}, e^{t(1-t)}, \sin(\pi t^{42}) \rangle$ for $0 \leq$	is parametrized by $t \leq 1$.	6. $\mathbf{F} = \langle y^3 + e^z, 3xy^2, $	$ xe^z\rangle$
In Exercises 4–7, find a potential function for F not conservative. 4. $\mathbf{F} = \langle x, y, z \rangle$.	or determine that F is		

Math 32B Lecture 2, Winter 2020	Homework 6		Due February 14, in class
Name:		Section:	UID:
7. $\mathbf{F} = \langle (2z+3)e^x, \sin y, 2e^x \rangle.$ 8. Evaluate		 9. Show that g(x, y) vortex field F(x, on the right-half plat the fact that F has n the origin? 	= $\arctan(y/x)$ is a potential function of the $y) = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ The $\mathcal{D} = \{(x, y) : x > 0\}$. Does this contradict to potential function on the <i>xy</i> -plane minus
$\oint (1+x+y)\mathrm{d}x + \sin z\mathrm{d}y + (y+y)\mathrm{d}x + (y+y)$	$-1)\cos z\mathrm{d}z$		
where C is the ellipse $9x^2 + 16y^2 = 25$, orier	nted clockwise.		
<i>Hint: Decompose the integral into</i> $\oint_C y dx$ <i>plu you identify an integral of a conservative vector tion?</i>	s everything else. Can field in this decomposi-		