
Math 32B - Lecture 2 Winter 2020

Homework 3

• Homework 3 is due January 24 in class.

• Exercises are taken from J. Rogawski, C. Adams, R. Franzosa Calculus, Multivariable, 4th Ed., W.

H. Freeman & Company.

• The starred problems will not be graded.

16.4. Integration in Polar, Cylindrical, and Spherical Coordinates

Exercises

In Exercises 3 and 5, sketch the region D indicated and integrate f (x, y) over D using polar coordinates.

3. f (x, y) = xy; x ≥ 0, y ≥ 0, x2 + y2 ≤ 4

5. f (x, y) = y(x2 + y2)−1; y ≥ 1
2 , x2 + y2 ≤ 1

In Exercises 9, 12, and 13, sketch the region of integration and evaluate by changing to polar coordinates.

9.
∫ 1/2

0

∫ √1−x2

√
3x

x dydx

12?.
∫ 2

0

∫ √3x

x
y dydx

13. S
∫ 2

−1

∫ √4−x2

0
(x2 + y2)dydx

In Exercises 18–20, calculate the integral over the given region by changing to polar coordinates.

18. f (x, y) = (x2 + y2)−3/2; x2 + y2 ≤ 1, x + y ≥ 1

19?. f (x, y) = x− y; x2 + y2 ≤ 1, x + y ≥ 1

20. f (x, y) = y; x2 + y2 ≤ 1, (x− 1)2 + y2 ≤ 1

21. Find the volume of the wedge-shaped region (Figure 18) contained in the cylinder x2 + y2 = 9

bounded above by the plane z = x and below by the xy-plane.

Hint: Use Fubini’s Theorem to write the volume as
∫∫
D

∫ x

0
1 dzdA for an appropriate domain

D in the xy-plane.

22. LetW be the region above the sphere x2 + y2 + z2 = 6 and below the paraboloid z = 4− x2−
y2.

(a) Show that the projection ofW on the xy-plane is the disk x2 + y2 ≤ 2 (Figure 19).
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Figure 18 Figure 19

(b) Compute the volume of using polar coordinates.

23?. Evaluate
∫∫
D

√
x2 + y2 dA where D is the domain in Figure 20.

Hint: Find the equation of the inner circle in polar coordinates and treat the right and left

parts of the region separately.

24. Evaluate
∫∫
D

x
√

x2 + y2 dA where D is the shaded region enclosed by the lemniscate curve

r2 = sin 2θ in Figure 21.

In Exercises 29 and 32, use cylindrical coordinates to calculate
∫∫∫

W
f (x, y, z)dV for the given function

and region.

29. f (x, y, z) = x; x2 + y2 ≤ 16, x ≥ 0, y ≥ 0, −3 ≤ z ≤ 3

32. f (x, y, z) = z; 0 ≤ z ≤ x2 + y2 ≤ 9

35. Express the triple integral
∫ 1

−1

∫ y=
√

1−x2

y=0

∫ z=x2+y2

z=0
f (x, y, z)dzdydx in cylindrical coordinates.

37. Find the equation of the right-circular cone in Figure 22 in cylindrical coordinates and com-

pute its volume.

In Exercises 4, 48, and 50, use spherical coordinates to calculate the triple integral of f (x, y, z) over the
given region.

45. f (x, y, z) = y; x2 + y2 + z2 ≤ 1, x, y, z ≤ 0

48. f (x, y, z) = 1; x2 + y2 + z2 ≤ 4z, z ≥
√

x2 + y2

50. f (x, y, z) = ρ; x2 + y2 + z2 ≤ 4, z ≤ 1, x ≥ 0

52. Find the volume of the region lying above the cone φ = φ0 and below the sphere ρ = R.
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Figure 20 Figure 21 Figure 22

Figure 24. The bell-shaped curve y = e−x2
.

54. Calculate the volume of the cone in Figure 22, using spherical coordinates.

56. LetW be the region within the cylinder x2 + y2 = 2 between z = 0 and the cone z =
√

x2 + y2.

Calculate the integral of f (x, y, z) = x2 + y2 over W , using both spherical and cylindrical

coordinates.

57?. Bell-Shaped Curve One of the key results in calculus is the computation of the area under

the bell-shaped curve (Figure 24):

I =
∫ ∞

−∞
e−x2

dx

This integral appears throughout engineering, physics, and statistics, and although e−x2
does

not have an elementary antiderivative, we can compute using multiple integration.

(a) Show that I2 = J, where J is the improper double integral

J =
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dxdy

Hint: Use Fubini’s Theorem and e−x2−y2
= e−x2

e−y2
.
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(b) b. Evaluate in polar coordinates.

(c) Prove that I =
√

π.

Solutions of some selected problems

2

2

2 3Solution of Exercise 12. The region of integration D is described by

0 ≤ x ≤ 2 and x ≤ y ≤
√

3x.

In other words, D is bounded by y = x, y =
√

3x, and x = 2. Since these

lines are converted to polar equations θ = π
4 , θ = π

3 , and r = 2 sec θ, respec-

tively, we may regard D as a radially simple region described by

π

4
≤ θ ≤ π

3
and 0 ≤ r ≤ 2 sec θ.

Moreover, the integrand f (x, y) = y is converted, in polar coordinates, to f (r sin θ, r cos θ) =

r sin θ. Therefore So the iterated integral in question is computed as:

∫ 2

0

∫ √3x

x
y dydx =

∫∫
D

y dA =
∫ π

3

π
4

∫ 2 sec θ

0
r sin θ rdrdθ

=
∫ π

3

π
4

(∫ 2 sec θ

0
r2 dr

)
sin θ dθ.

(16.1)

The inner integral in r is easily computed as

∫ 2 sec θ

0
r2 dr =

[
r3

3

]2 sec θ

r=0
=

8
3 cos3 θ

.

Plugging this back to (16.1) and proceeding,

(16.1) =
∫ π

3

π
4

8
3 cos3 θ

sin θ dθ =

[
4

3 cos2 θ

] π
3

π
4

=
8
3

�

Solution of Exercise 19. Before proceeding to the solution, we remark that the integral is zero by the

symmetry argument. Indeed, consider the reflection (x, y) 7→ (y, x) around the line y = x.

Let D denote the domain of integration. This is the region bounded by x2 + y2 = 1 and

x + y = 1. Converting these to polar equations, we get r = 1 and r = (cos θ + sin θ)−1. This allows

to describe D as a radially simple region:

D : 0 ≤ θ ≤ π

2
and

1
cos θ + sin θ

≤ r ≤ 1.
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Together with f (r cos θ, r sin θ) = r(cos θ − sin θ), we get

∫∫
D
(x− y)dA =

∫ π
2

0

∫ 1

1
cos θ+sin θ

r(cos θ − sin θ) rdrdθ

=
∫ π

2

0

(∫ 1

1
cos θ+sin θ

r2 dr

)
(cos θ − sin θ)dθ

(16.2)

The inner integral in r is:

∫ 1

1
cos θ+sin θ

r2 dr =
[

r3

3

]1

r= 1
cos θ+sin θ

=
1
3

(
1− 1

(cos θ + sin θ)3

)
.

Plugging this back, we get

(16.2) =
∫ π

2

0

1
3

(
1− 1

(cos θ + sin θ)3

)
(cos θ − sin θ)dθ. (16.3)

This integral can be easily computed by substituting u = cos θ + sin θ. Indeed, by noting that

du = (cos θ − sin θ)dθ, the integral (16.3) becomes

∫ θ= π
2

θ=0

1
3

(
1− 1

(cos θ + sin θ)3

)
(cos θ − sin θ)dθ =

∫ u=1

u=1

1
3

(
1− 1

u3

)
du = 0.

�

Solution of Exercise 23. The region D is bounded between two circles

x2 + y2 = 4 and (x− 1)2 + y2 = 1.

In polar coordinates, the larger circle is easily described as r = 2. The case

of the smaller circle is a bit tricky. First, since it lies in the right half-plane,

we have to restrict the range of θ describing this circle to −π
2 ≤ θ ≤ π

2 .

After than, applying the conversion formula (x, y) = (r cos θ, r sin θ) to the

equation of the smaller circle becomes:

(x− 1)2 + y2 = 1 ⇔ x2 + y2 = 2x ⇔ r = 2 cos θ.

This tells that the part of the region D corresponding to −π
2 ≤ θ ≤ π

2 is a radially simple region

bounded between two curves r = 2 and r = 2 cos θ.

Now write Dright (Dleft, respectively) for the part of D lying in the right half-plane (left half-
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plane, respectively). Then Dleft is the polar rectangle

Dleft :
π

2
≤ θ ≤ 3π

2
and 0 ≤ r ≤ 2

and Dright is the radially simple region

Dright :
−π

2
≤ θ ≤ π

2
and 2 cos θ ≤ r ≤ 2.

Together with
√

x2 + y2 = r, it then follows that

∫∫
D

√
x2 + y2 dA =

∫∫
Dleft

√
x2 + y2 dA +

∫∫
Dright

√
x2 + y2 dA

=
∫ 3π

2

π
2

∫ 2

0
r2 drdθ +

∫ π
2

− π
2

∫ 2

2 cos θ
r2 drdθ

=
∫ 3π

2

π
2

8
3

dθ +
∫ π

2

− π
2

8
3
(1− cos3 θ)dθ

The first integral in the last line is easily computed as 8π
3 . For the second one, we may utilize the

identity cos2 θ + sin2 θ = 1 and the substitution u = sin θ to compute:

∫ π
2

− π
2

8
3
(1− cos3 θ)dθ =

8π

3
− 8

3

∫ π
2

− π
2

(1− sin2 θ) cos θ dθ

=
8π

3
− 8

3

∫ 1

−1
(1− u2)du

=
8π

3
− 32

9
.

Therefore the answer is
16π

3
− 32

9
. �
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