
Math 170E - Lecture 1 Winter 2020

Note 10

Today, we continue the study some common distributions.

2.4. The Binomial Distribution

In the last class, we verified:

Properties of the Binomial Distribution

The binomial distribution is a distribution of the discrete type satisfying:

Parameters
n ∈ {0, 1, 2, · · · } : number of trials

p ∈ [0, 1] : success probability of each trial

Support {0, 1, · · · , n}

PMF (n
x)px(1− p)n−x

Mean np

Variance npq = np(1− p)

MGF ((1− p) + pet)n, (t ∈ R)

Before moving to the next section, we make some remarks:

• b(1, p) is exactly the Bernoulli distribution with parameter p.

• Note that both the mean and variance of b(n, p) is proportional to the sample size n. This is not

a coincidence, as we will derive this fact using independence in the later part of this course.

• A binomial distribution is a typical example where the PMF has a single “peak”. And if n is

large, then a probability histogram looks like a bell-shaped curve.

• The CDF F(x) of X having a b(n, p) distribution can be computed as

F(x) = P(X ≤ x) =
bxc

∑
y=0

p(y) =
bxc

∑
y=0

(
n
y

)
py(1− p)n−y.

(For x < 0, the sum is regarded as zero. For x > n, note that (n
y) = 0 for y > n and hence the

sum is essentially run over y = 0, · · · , n.)

Although this formula provides a way to compute the exact probabilities related to the binomial

distribution, it is often impractical for numerical computation especially when n is large. We

will later return to this issue when we learn the normal distribution.
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The Hypergeometric Distribution

• Consider a collection of N = N1 + N2 objects with

N1 of them belonging to the 1st class;

N2 of them belonging to the 2nd class;

For n ∈ {0, · · · , N}, we choose n objects from these N objects at random and without replace-

ment and write

X = [# of objects selected that belong to the 1st class].

Then for each non-negative integer x,

P(X = x) =
(N1

x )(
N2

n−x)

(N
n )

.

The distribution of X is called the hypergeometric distribution with parameters N1, N2, and n,

denoted HG(N1, N2, n).

Example

Five cards are selected at random without replacement from a 52-card deck of playing cards.

Let

X = [# of face cards (kings, queens, jacks)].

Since there are total 12 face cards in a deck of playing cards, X has HG(12, 40, 5) distribution.

In particular, its PMF is

p(x) =
(12

x )(
40

5−x)

(52
5 )

, x = 0, 1, 2, 3, 4, 5.

• We summarize its properties:
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Properties of the Hypergeometric Distribution

The hypergeometric distribution is a distribution of the discrete type satisfying:

Parameters

N1 ∈ {0, 1, 2, · · · } : number of objects in the 1st class

N2 ∈ {0, 1, 2, · · · } : number of objects in the 2nd class

n ∈ {0, · · · , N = N1 + N2} : number of objects chosen

Support {max(0, n− N2), · · · , min(n, N1)}

PMF (N1
x )(

N2
n−x)

/
(N

n )

Mean n N1
N

Variance n N1
N

N2
N

N−n
N−1

Proof. We only prove the formula for the mean, and leave that of the variance as homework. Let

X has a HG(N1, N2, n) distribution and p(x) be the PMF of X. Then

E(X) = ∑
x∈S

xp(x) = ∑
x∈S

x
(N1

x )(
N2

n−x)

(N
n )

= ∑
x∈S
x 6=0

x
(N1

x )(
N2

n−x)

(N
n )

,

where the last step follows by discarding the term corresponding to x = 0, which is possible since

that term does not contribute to the value of E(X). Now for x 6= 0, we have(
N1

x

)
=

N1!
x!(N1 − x)!

=
N1

x
(N1 − 1)!

(x− 1)!(N1 − x)!
=

N1

x

(
N1 − 1
x− 1

)
.

A similar computation also shows that (N
n ) =

N
n (

N−1
n−1). Plugging these to the expectation of X,

E(X) = ∑
x∈S
x 6=0

x
N1
x (N1−1

x−1 )(
N2

n−x)
N
n (

N−1
n−1)

= n
N1

N ∑
x∈S
x 6=0

(N1−1
x−1 )(

N2
n−x)

(N−1
n−1)

.

But the boxed summation in the last step is exactly the total probability for HG(N1 − 1, N2, n− 1)

distribution, thus it must sum to 1. Therefore the desired formula is established.

Remarks)

• If n objects are drawn with replacement instead, this the experiment is a binomial experiment with

the sample size n and the success probability p = N1
N . The mean and variance of the number of

objects belonging to the 1st class is then

np = n
N1

N
and np(1− p) = n

N1

N
N2

N
.
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Surprisingly, the expectation is the same in both cases. The variance also looks similar, and

indeed, if N is large compared to n, then N−n
N−1 ≈ 1 and the variance of HG(N1, N2, n) is also close

to that of b(n, N1/N). In fact, we also expect that b(n, N1/N) provides a good approximation of

HG(N1, N2, n). This intuitively makes sense, since sampling without replacement from a large

pool may be approximated by independent sampling (sampling with replacement).

• The MGF of HG(N1, N2, n) is in general not expressible in elementary functions.

2.6. The Negative Binomial Distribution

• In binomial distribution, we are interested in the number of successes from a fixed number of

independent Bernoulli trials.

• Now we consider: r is a fixed positive integer, and

X = [# of independent Bernoulli trials until exactly r successes occur].

Then X is said to have a negative binomial distribution.

Properties of the Negative Binomial Distribution

The negative binomial distribution is a distribution of the discrete type satisfying:

Parameters
r ∈ {1, 2, · · · } : number of successes

p ∈ [0, 1] : success probability, q = 1− p

Support {r, r + 1, r + 2, · · · }

PMF (x−1
r−1)pr(1− p)x−r

Mean r
p

Variance rq
p2

MGF
(

pet

1−(1−p)et

)r

Proof. Since we need at least r trials to observe r successes, X can take integer values ≥ r. So the

support of X is {r, r + 1, r + 2, · · · }. Then for each x = r, r + 1, · · · ,

P(X = x) = P
(

r-th success
at the x-th trial

AND
r− 1 successes

in the first x− 1 trials

)
= p ·

(
x− 1
r− 1

)
pr−1(1− p)x−r =

(
x− 1
r− 1

)
pr(1− p)x−r.
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This is the PMF of X. Before computing the MGF, we enjoy the consequence of this formula. Since

the sum of these probabilities is 1,

1 =
∞

∑
x=r

(
x− 1
r− 1

)
pr(1− p)x−r, which implies

∞

∑
x=r

(
x− 1
r− 1

)
qx =

(
q

1− q

)r

.

It can be shown that this holds not only for q = 1− p ∈ [0, 1] but also for all of |q| < 1. Using this,

the MGF of X can be computed as:

M(t) = E[etX] =
∞

∑
x=r

etx
(

x− 1
r− 1

)
pr(1− p)x−r

=

(
p

1− p

)r ∞

∑
x=r

(
x− 1
r− 1

)(
(1− p)et)x

=

(
p

1− p

)r ( (1− p)et

1− (1− p)et

)r

=

(
pet

1− (1− p)et

)r

Notice that, if G(t) = pet

1−(1−p)et is the MGF of the geometric distribution with parameter p, then

the above result simplifies to M(t) = [G(t)]r. From this relation, we can check that both

M′(0) = rG′(0) and M′′(0)−M′(0)2 = r[G′′(0)− G′(0)2]

hold. So, both the mean and variance of X is exactly r times the mean and variance of the geometric

distribution with parameter p, yielding

E(X) =
r
p

, Var(X) =
rq
p2 .

Example (Couple Collector Problem)

Each box of a brand of cereals contains a coupon, and there are 6 different types of coupons.

What is the expected number of boxes to be purchased in order to collect all 6 types?

Solution. Let i ∈ {1, · · · , 6}. Then, after i− 1 different types of coupons have been collected, the

probability that each box of serial contains a coupon of uncollected types is

p = 1− i− 1
6

=
7− i

6
.

So the expected number of boxes of cereals to be purchased until a new type of coupon is collected

is the mean of a geometric random variable with this p = (7− i)/6, which is 1/p = 6/(7− i).
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So the expected number of boxes to be purchased in order to collect all 6 types is:

6
6
+

6
5
+

6
4
+

6
3
+

6
2
+

6
1
= 14.7

Example ()

Let X be a random variable having the negative binomial distribution with parameters r = 2

and p = 1
2 . Find the value of P(X ≤ 10).

Solution. It is a bit boring to directly compute the sum

P(X ≤ 10) =
10

∑
x=2

(
x− 1

1

)
p2(1− p)x−2.

Instead, we may employ the following trick: The condition X ≤ 10 is the same as saying that there

are at least 2 successes in the first 10 independent Bernoulli trials with p = 1
2 . So if Y denotes the

number of successes in the first first 10 trials, then

P(X ≤ 10) = P(Y ≥ 2) = 1− P(Y < 2).

Since

P(Y < 2) =
1

∑
y=0

(
10
y

)
py(1− p)10−y =

11
1024

,

it follows that

P(X ≤ 10) =
1013
1024

≈ 0.989 . . .
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